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1. Introduction

Nonlinear partial differential equations (NPDES), are used to describe a wide variety of complex occurrences in the sciences,
especially in the physical sciences. Finding explicit and accurate solutions, particularly for solitary wave solutions to nonlinear
evolution equations in mathematical physics, is a crucial part of nonlinear research.

The Drinfeld-Sokolov-Wilson (DSW) model, introduced by Drinfeld, Sokolov, and Wilson, represents a system of nonlinear
partial differential equations (NLPDES) designed to simulate gravitational water flow influenced by shear stress, such as overland
flows, dam breaks, flows through vegetation, and floods (Drinfeld V. G. et al., 1981; Drinfeld V. G. et al., 1985) [, Wilson
(Wilson, G., 1982) 22 further expanded this model to account for dispersive water waves, which play a significant role in fluid
dynamics. Hirota et al. later presented unique static solitons for this equation that interact with moving solitons without any
deformation (Hirota, R., et al., 1986) [*?],
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DV (x,t) = —aW,(x,t)
th(x! t) = _waxx(xl t) - Cv(x! t)wx(xl t) - dW(x, t)vx(x: t) (1)

Here, t is an independent variable, while a, b, ¢, and d are non-negative parameters that represent the amplitude of wave modes.
The functions V(X, t) describe the amplitude of wave modes as they vary with time t and space X, respectively. Every NLPDE
has an infinite number of solutions, and finding the precise solution is a challenging undertaking. Now that more potent
computers and sophisticated computational methods have been developed, it is possible to partially treat even nonlinear
problems. Several researchers have recently shown an interest in this standard DSW model (Hirota, R., et al., 1986; Li, Z. B.
2007; Inc, M. 2006; Wazwaz, A. M. 2006; Zha, X. Q, et al., 2008; Guo, G. X., et al., 2010; Zhang, W. M. 2011; Ali, N., et al.,
2022) [12,13, 3,11, 21, 23-24]_

Many more partial differential equations (PDEs), similar to the set of PDEs mentioned above, are essential for explaining a wide
range of mathematical and physical events. The presence of fractional-order derivatives in nonlinear partial differential equations
(NLPDEs) makes research more interesting and difficult; as a result, these equations are referred to as fractional partial
differential equations (FPDESs). Jaradat et al. (Jaradat et al., 2016) [l generalized the Drinfeld Sokolov-Wilson (DSW) system
by replacing the first-order time derivative in the equations with a fractional derivative of order a. This generalized system,
referred to as the fractional DSW system and has important applications in both physics and engineering.

DIV(x,t) = —aW (x, )W, (x, t),
DIW(x,t) = —bW, .. (x, t) — c(x, OW,(x,t) —dW(x, )V, (x,t),t > 1,0 < a< 1. 2

It has made good progress to solve nonlinear fractional/non-fractional partial differential equations with approximate analytical
approaches. Numerous researchers have extensively studied the DSW equations to find both exact and approximate solutions
for fractional and non-fractional orders, such as: Homotopy perturbation transform method (HPM) (Singh, P. K., et al., 2015)
1291 Extended tanh method (Bashar, M. H., et al., 2023) [l and singular operators method (Saifullah, S., et al., 2022) M1 etc. In
addition to these approaches, there are several mathematical strategies are also available for solving linear and nonlinear
differential equations, such as the Adomian decomposition method (ADM) (Adomian G., 1994; Wazwaz, A. M., 1999) 2.2 and
New iteration method (NIM) (Daftardar-Gejji, V., et al., 2006) ["). Alternatively referred to as the inverse operator approach, one
of the better methods for solving nonlinear differential equations is the integral transformation, which is comparable to the semi-
analytical approaches that were previously mentioned. Saifullah (Saifullah et al., 2022) [*"] solved fractional DSW equations
with the Laplace transform combined with the Adomian decomposition method, commonly known as (LADM). This study aims
to address the challenges posed by the unreported findings that have yet to be identified in the field. The primary focus of this
research is to determine the solutions of time-fractional DSW equations using Caputo fractional derivatives. To achieve this, we
employ three advanced mathematical methods: the Shehu Transform Adomian Decomposition Method (STADM) the Shehu
Transform Modified Adomian Decomposition Method (STMADM), and the Shehu Transform New Iteration Method (STNIM).
This research is the first to comprehensively explore the Shehu Transform Adomian Decomposition Method (STADM) in
relation to Mittag-Leffler type kernels and fractal fractional operators exhibiting exponential decay. These methods offer new
insights into the behavior and solutions of complex time-fractional differential equations while enhancing both accuracy and
efficiency. The structure of the paper is as follows: While Sections 3 and 4 provide a detailed explanation of the stages involved
in the suggested methods, Section 2 provides basic definitions for fractional calculus. We use the recommended techniques in
Section 5 to get approximations for the time-fractional DSW system solutions. Lastly, our findings and observations are
presented in Section 6.

2. Basics of Shehu Transformation
We provide some fundamental concepts and characteristics of the theory of fractional calculus, which are used throughout the

remainder of this piece of writing.
I¢l

Definition 2.1.: Consider the following set X = {f(t): 3M, vy, v, > 0,|f(t)| < MeVi,if,t € (—1) x [0, )}
Next, the Shehu transform of f(t) € X may be expressed as follows:

HAO] = H(u,s) =s [ f(De w dt 3)
The Inverse Shehu transform is also provided as:

HF(s,uw)] = f(t), for, t = 0.
Equivalently,

F6) = HF(s,w] = 25 [ Lok F(s, u)ds.

o—ieo
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In the complex plane, i.e. (s=x+iy), this integral is considered along s= a. Here, s and u are the Shehu transform variables, while
a is a real constant. For more details, see (Maitama, S., et al., 2019) (161,

Definition 2.2.: The Caputo time derivative regarding t of order >0 of v(x, t) in H(a, b) is defined as (Adams, R. A. 1975:
Belgacem, R., et al., 2019) [X.I:

1 t _p_1 0™ (x,0) .

r(n_g)fo(t_f)" B 1Td{,1f,n—1<ﬁ<n,neN .

a"w(x,) . _ ()
aqn "’f’ﬁ_n

Dtsv(x, t)=

Definition 2.3.: The Shehu transform of t™, i.e. (Maitama, S., et al., 2019) 6

}f(fn—m) - (g)m,m =0,1,2,..

And

9 () = () 6> -1

Definition 2.4: The Shehu Transform (Maitama, S. et al., 2019) 8] of D v (x, t) regarding t of order n >1:

HDvG, 0] = (2) 500w — Zim () DAVEE Olemo ©)

where 7(x, u) is Shehu Transform of v(x, t).

Definition 2.5: The Shehu Transform (Belgacem, R., et al., 2019) [®1 of Dth(x, t) regarding t of order p >0:

B B-k-1
#[Dfv( )] = (5) s w) -T2 (2) DA Ol ®)
where 7(x, u) is Shehu Transform of v(x, t) and Df is the Caputo derivative of order 8 > 0.

3. Algorithms for the DSW system
Consider the DSW system previously described:

DIV(x,t) = —aW(x, )W, (x, 1),
DIW(x,t) = —bW, .. (x,t) — c(x, OW,(x,t) —dW(x, )V, (x,t),t > 1,0 < a < 1.
Where, 0 < o < 1 and the initial conditions are v(x, 0) = f(x) and w(x, 0) = g(x). Where f(x) and g(x) are two known functions of

the dependent variable x. To solve the aforementioned system of equations under the given initial conditions, take the ST of both
sides of the system of equations as:

H[DZv(x, t)] = —aH[w(x, )w,(x,t)],
}[[wa(x, t)] = —bH [Wypr (x, )] — cH [v(x, )W, (x, t)] — dH [w(x, t)v, (x, t)].
Or

() Vers - () v, 0) = st w0,

(E)B W(x,s,u) — (E)B_l w(x, 0) = —bH [Wypr (x, £)] — cH [v(x, )W, (x, )] — dF[w(x, t) v, (x, t)].
Or

V(x,s,u) = f(x) (E) —a (E)a}[[w(x, tw, (x, t)],
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u

W(x,s,w) = g(x) (E) —b (g)G H Wy (x, )] = € (g)B Hw(x, )wy(x, )] — d (-)B Hw(x, v (x, O]

N

Applying the inverse Shehu transform to above equations we get,

oaH
v(x,t) = f(x) —aH ! [(E) [w(x, Hw, (x, t)]],

w(x, t) = g(x) — bH 1 [(g)ﬁ H Wy (x, t)]] — K1 [(g)B HwCx, Owy(x, t)]] —dH! [(g)ﬁg{[w(x, v, (x, )]|.
Or

v(x,t) = f() - aFt ! [(3)“%[%&]} @)

w(x,t) = g(x) — bH 1 [(g)ﬁ}f[ﬁ]] —cH? [G)Bf}[[]\fz]] —dK1 [G)B}[[]\@]]. (8)

Here, Vi, IV, and V5 represents nonlinear terms of differential equations, while L represents the linear part of the same. Let
there be a series solution to the initial differential equations as:

v(x, t) = 2i2ovi(x, t) and w(x, t) = 220 w;(x, t).

Decomposition of non-linear terms N, = w(x, t)w,(x, t), N, = v(x, )w,(x, t)and Ny = w(x, t)v,(x, t) will be made by
Adomian polynomials A4,,, B,,, and C,, respectively.

Ny = 320 An, Ny = 580 By, Ny = 3520 CpiC
To solve the DSW system the few Adomian polynomials are calculated for V; = w(x, t)w, (x, t)
Ao = Wo (Wo)x
Ar=d/dh [ (wo + Awi)(Wo + Awi)x ] [azo
= w1(Wo)x + Wo(W1)x
Az =(1/21) % d2/dr2 [ (wo + Awi + A2wa)(Wo + Awi + A2W2)s | o
= w2(Wo)x + Wi(W1)x + Wo(Wa2)x

As=(1/31) % d¥/dW [ (Wo+ Awr + A2wWa + A3ws)(Wo + Awr + A2w2 + Mws)y ] [azo

In general, Adomian Polynomials for N1 are calculated as below

_ 14"
n T praan

Ny (B0 ¥wi) (Biizo M Wi)x)) la=o- 9)
Similarly, we have Adomian polynomials for v, = v(x, t)w,(x, t)as follows:

By = v°(w%),

By = d/dA[(v® + W) (W + A(W"))]la=0

= v (W) + v (W

B, = (1/21) x d?/d22[(v° + vt + 22v) (W + Aw! + 22w?),]|a=0

= vz(WO)x + vt (Wl)x + vo(WZ)x
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In general, Adomian Polynomials for N2 are calculated as below:

By = 2 Ny (=0 M0 (oo X W) Iaco- (10)
Similarly, we have Adomian polynomials for V; = w(x, t)v,(x, t)as follows:

Co = wo (Vo)x

Ci=d/dA [ (Wo + Aw1)(Vo + Avi)x J|a=o

= wi(Vo)x + Wo(Vi)x

Ca=(1/21)* &/dA2 [ (o + Awr + X2W2)(Vo + Avi + A2v2)s ] [amo

= Wo(V2)x + Wi(V1)x + Wa(Vo)x

In general, Adomian Polynomials for N3 are calculated as below:

Ch = %%N3((ZZ=07\RWk)(ZZ=0 )\k(vk)x))ll=0' (11)

To obtain a series solution following recurrence formula will be used,

wmﬂ=ﬂw—wrﬂefwmwﬂ.

w, (x,t) = g(x) — bH 1 [(g)ﬁ :H[L]] — dH1 [(g)ﬁ }[[Cn_l]] (12)

4. Implementation of STADM
By employing the suggested methodologies as described below, we can derive the series solutions for the fractionally coupled
DSW problem.

DIV (x,t) = =3W(x, t) W, (x, 1),

DIW(x,t) = —2W,,.,. (x, t) — 20, OW, (x,t) — W(x, )V, (x,t),t > 1,0 < a < 1. (13)
subjected to the initial guesses conditions:

V(x,0) = 3sech?®x and W(x,0) = 2sech x.
For o = 1, this system of equations has exact solution as:

V(x,t) = 3sech?(x — 2t),

W(x,t) = 2sech(x — 2t).

As explained in the section 3 the iteration scheme for calculating the series components is as follows:

v,(x,t) = 3sech?x — 3H 1 [(%)a}[[ ?‘;OAi]],

w;(x,t) = 2sechx — bH ™! [(%)B}[[Li]] — cH? [(%)B}[[ ?‘;OBi]] — K1 [(g)ﬁ}f[z;?;o CL-]].

Let, vo(x,t) = 3sech?x and wy(x,t) = 2sechx.
The few terms are calculated below:
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V,(x,t) = —3H1 [(%)a i7-[[—4sech2 (x)tanh x]]

_ 2
= 12sech™(x) tanh x —— r( oy

W, (x,t) = 21 [(E)a H[2tanhx (tan h? x — 55ech4(x)]] +

2Kt [(g)a H[6tan h x sech’ (x)]] 2HT [(g)a H[12 tan h x sech’® (x)]]

= 4 tanh(x) sech (x)

F( +1)

Similarly,

u

V,(x,t) = —3H 1! [(;)QJ{[B(Z sech?® (x) — 3sech* (x))]]

= 24(-3sech* (x) + 2 sec h? (x)) ra+1)’

W,(x,t) = 2H 1 ((%)a}[ [ (4( tanh*(x) sech(x) + 18 tanh?(x) sech® — 5sech® (x)))])

I'(a+1)

e (@ oot el

+H 1 ((g)aﬂ[ 12 sech®(x) - r( L —24sech®(x)(3 — 4sech3(x))])

= 8(~2 sech®(x) + sech(x) - s

The same procedure can be used to calculate other series terms. The whole solution is now written out as the sum of these terms:

v(x,t) = 3sech?(x) [1 +4 tanhx 5t 8(—3sech? (x) +2)—— (14)

F(2a+1) +- ]

5t 4(=2sech?®(x) +1)

w(x,t) = 2sech (x) [1+2tanhx +- ] (15)

1"(2a+1)

The series of solutions described above had previously been determined by many researchers using several approaches see
(Baskonus, H. M. 2019) 1,

Theorem 1: The solution w(x, t) = .72, w;(x, t) using ADM is convergent if 0<k<1 and ||w;,|| < oo where k = % where

L, is the Lipschitz constant for a linear term and L, is lipschtiz constant for the nonlinear term. For more details see (Baskonus,
H. M. 2019) B,

4. Solution with Modified Adomian Polynomials

Since the nonlinear linear term will be broken down using the modified Adomian polynomial, this technique will be known as
the Shehu Transform Modified Adomian Decomposition Method (STMADM). As this is explained in (Wazwaz, A. M. (1999)
201 the modified Adomian polynomials are calculated as below:

Ay =1(Sn) — XI5 A (16)

where S, = 2{1=0Wi2{1=0(wi)x and f is a symbol for the nonlinear part.
The few revised polynomials for N1 is 4, = wy(wy),

Ay = -N1((W0 +wy)(wy + Wl)x) - A_o

= ((wo + wy) (W + wy),) — wo(Wo)
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= wy(Wo)x + wo(Wp)x + wi(wy),.
A, = ]\G((Wo +wy +wy)(wo +wy + Wz)x) - (4 + 4y
= ((Wo +w; +wy)(wo +wy + Wz)x) — (Wo(Wo)x + wy(Wo)x + wo(Wy)y + wy(wy),)

= wo(W2)x + wi(Wp)y + wo(Wy)y + wo(Wo)y + wa (W),

Similarly, this is calculated for N_2
By = vo(Wo)x
By = N;((wo + vi)(wo + w1)x) — By
= ((o + )Wy +wp)y) = vo(Wo)x
= v1(Wo)x + vo(W1)y + v1(W1),
B, = Ny ((wo + vy + v)(Wo + wy +wy),) — (By + By)
= ((170 + v, +v)(wy +wy + wz)x) — (v (Wo)y + vo(Wy)y + V1 (W) + vo(Wg),)

= vo(W2)x + v1(W2)x + v,(W2)x + v (Wy)y + V2 (Wp)y

Similarly, this is calculated for N3
Co = wo(vo)x
€1 =M ((wo +w) (o + 1)) — Co
= ((Wo +wy)(vy + U1)x) —wo(Vo)y
= Wo (1) + w1 (Vg)x + w1 (V1)
Cy = Ny ((wg + wy +wy) (g + vy + 1)) — (Co + Cy)
= ((w0 +wy, +wy)(vy + vy + vz)x) — (W) + Wy (V) x + Wi (V1) + Wy (Vo))

= Wo(V2)x + Wi (V2)x + W (V) + Wa (Vo) x + Wa(12)y

Then the revised iteration scheme is as follows

v, 6) = () — a3t ™! [(%)“%[M]], an

Wa(x,8) = g(x) = b [(‘;‘)B%[L]] - c3t [(‘;‘)“mm]] — dzt [(3)“mm1] (18)

Terms are calculated with modified ADM as follows:
Let,

vo(x,t) = 3sech? x and wy(x,t) = 2sechx.

-1 u a 2
Vi(x,t) = —-3H [(;) H[—4sec hxtanhx]]

o
= 12sec? hxtan hx ——,
I(a+1)
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a
Wi(x,t) = 2H™1 [(%) H[2 tanh (x) (tanh?(x) — 5 sec? hx]]

u

+2H! [(g)a H[6tan h(x) sec® hx]] +H? [(;)a H[12 tan h(x) sec® hx]]

= 4 tanh(x) sech(x) -

F(oc+1)

Again,

Vy(x,t) = —3H [(f)a?f[/l_l]],
Y [(;)“}r[m(wo)x Fwo(wp)x + wi ()]

V,(x,t) = 24(—3 sec h* (x) + 2 sec h? (x))

£2a
ra+1)

r(2a+1) 3a

— 48(4 sec h® (x) tanh®(x) — 3 sec h® (x) tanh(x)) T Gar DI D)’

W, (x,t) = —2(72 sec h® (x) tanh?(x) — SSech5 (x) — 4 sech (x) tanh*(x)) — 2(—24sech® (x) tanh?(x) +

F(2 +1)

5 _ 3 2
12 sec h® (x) — 12 sec h® (x) tanh?(x)) F(2a+1)

ra+1) 3a

—2 * 48(sec h® (x) tanh(x) — sec h® (x) tanh3(x)) T Gar DI a2

—2 * 12(sec h® (x) — 3sec h® (x) tanh3(x) +)

r2a+1)
2sech® () tanh® ) e e £

— 2 % 24(sec h® (x) tanh(x) —

F(Z +1)

ra+1) 3a
r(a+1)I(a+1)?2

W, (x,t) = 8(—2sech® (x) + sech (x)) + 48(4 sec h® (x) tanh3(x) — 3 sec h® (x) tanh(x))

r(2a+1)

and so on....
The three terms solution to the above problem is given below:

V(x,t) = 3sech® x + 12 sec? hx tan hxr( 5t (48 sec h? (x) tanh?(x) — 24 sec h* (x))

tZ
r2a+1)

ra+1) 3a
r@oa+1)r(a+1)2

— 48sec h? (x) tanh(x) (sec h? (x) — tanh?(x))

2 2 _ 2 —
V(x,t) =3sech [1+4tanhx - +1)+8( 3sech (x)+2)r(2 on 48/3tan h x(2 sec h* (x)
1)L+1)t3a] (19)

ra+1)r(a+1)2

W(x,t) = 2sechx + 4 tanh(x) sec h (x)

ra+1)
3 sec h® (x) tanh(x)) m 3a

+ 8(—2sech® (x) + sech (x)) + 48(4 sec h® (x) tanh3(x) —

F( +1) ra+1)

[z sec h(X)[ 1 + 2 tanh (x) s +4(—2 = 2sech? () + 1) m;l) +

24 tan h x(4 sec h? (x) tanh? (x) 3 sec h4 x) __T@atd) t3“] (20)

ra+1)r(a+1)=2
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5. Solution with NIM
Instead of decomposing the nonlinear terms with ADM and MADM, we use the iteration method as follows and decompose the
term N(x, t) by New iteration approach as given below:

N(x,t) = Enzo Gn,

Gy = N (vy) and

N t) = Titeo Gn = Zitzo( W Tio v) = N (B v)) m = 1,2, . (21)
The decomposition of nonlinear polynomials N1 is taken as follows:

Go = wo(Wo)y,

Gy = N;((wo + wy) (Wo + wy)y) = Ny (wo(Wo)s)

= ((Wo + wy)(wy + Wl)x) — wo(Wp)y

= w1 (Wo)x + wo(Wy)x + wy(wy),

G, = ]\G((Wo +wy +wy)(wp +wy + Wz)x) - ]\G((Wo + wy)(w, + Wl)x)

= ((Wo +w; +wy)(wp +wy + Wz)x) — (Wo(Wo)x + wi(Wo)y + wo(wy), + wy(wy),)

= Wo W)y + wi(Wa)y + wa(wy)y + wy (W) + wy (W),
Similarly, this is calculated for N2

Py = vo(Wo)x

P = ]\G((Vo +v)(wp + Wl)x) — No(vo(Wo)y)

= ((Vo +v)(wy + Wl)x) — vo(Wo)x

= v (Wo)x + vo(Wy)x + v1 (W)

P, = Nz((vo +v, +vy)(wy +wy + Wz)x) — ]\fz((vo +v)(wy + Wl)x)

= ((Vo + v +v)(wo +wy + Wz)x) — (W1 (Wo)x + vo(Wy)yx + V1 (W) + vo(Wp)y)

= vo(W2)x + v1(W2)x + V2 (W2 + v, (W1 + v, (Wo)s
Similarly, this is calculated for N_3

Ko = wo(vo)s,

K, = ]\@((Wo +wy)(vp + vl)x) — N3 (wo (Vo))

= (Wo + wy) (Vg + v1)x — wo (Vo)

= Wo(v1)x + w1 (Vo) x + w1 (V1))

K, = ]\@((W0 +w; +wy)(vy + vy + vz)x) — ]\f3((w0 +wy)(vg + 171)x)

= (Wo + wy + wp) (Vg + vy 4 V2)x — [Wo(Vo)x + Wo (V1) + Wy (Vo) + Wy (v1)]

= Wo(V2)x + W1 (V2)x + Wa(Vg)y + Wa (V1) + Wy (12)y
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The series components are computed using the new iteration approach as shown below:

2
V(x,t) =12 sec hxtanhxr( oy

V,(x,t) = (48 sec h? (x) tanh?(x) — 24 sec h* (x))

2 r2a+1) 3a
tanh (x)) rGa+1)r(a+1)? e

2 2 _
ey ~ 48sech® (x) tanh(x) (sech” (x)

W, (x,t) = 4tanh(x) sech (x) ——

F(a+1)

rQa+1) 3a

W, (x,t) = 8(—2sech® (x) + sech (x)) TGar DI aID?

o T 48(4 sec h® (x) tanh3(x) — 3 sec h® (x) tanh(x))

Consequently, NIM’s approximate series solution up to three terms is

+ 8(—3sech? (x) +2)

V(x,t) = 3sech? [1 + 4tanhx

) T(2a+1) 3a]
r@Ga+1)r(a+1)2

—48/3tan hx(2 sech? (x) —

F( +1) F(2 +1)

(22)

wW(x, t) = [2 sec h(x)[1 + 2 tanh (x) r( -t 4( =2 —2sech? (x) +

24 tan h x(4sec h? (x) tanh?(x) — 3 sech* (x)) __f@aty) t3"‘] (23)

1) r(z r3a+1)r(a+1)=2

This series solution matches the series solution obtained in (Ali, N., et al., 2022).

Theorem 2: If the function V' is infinitely differentiable (i.e., C*) in the neighborhood of the point W, and the norm IN"(Wo)I
is bounded by K>0 for all n, and if the sequence {W;} satisfies IWil <Z < 1/e fori= 1, 2,..., then the series > G, is convergent.
Additionally, for n =1, 2..., every term in the series meets the inequality: IG,| <K Zne™! (e — 1), for n =1, 2..., (For more details
see (Ali, N., et al., 2022) I,

04

vixt)

0.08

0.04

Fig 1: 3D plot of exact solutions to v for o= 1
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vix, t)

vix, t)

Fig 4: 3D plot of approximate solution with NIM to v for a = 1
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Fig 7: 3D plot of approximate solution with MADM
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Fig 9: Proximity of series solution obtained by ADM and MADM toward the exact solution for v.
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Fig 10: Proximity of series solution obtained by ADM and MADM toward the exact solution for w.
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Fig 11: Propagation of absolute error for w(x, t) in case of o=1
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Fig 12: Propagation of absolute error for v(x, t) in case of a=1.

6. Results and Discussion

We employ several advanced mathematical techniques to develop a series solution for the time fractional Drinfeld-Sokolov-
Wilson (DSW) equations. The Shehu Transform serves as a foundational tool, facilitating the application of the Adomian
Decomposition Method (ADM), which is often referred to as the STADM (Singh A., et al., 2023) ['8. This approach allows us
to break down complex nonlinear equations into simpler components for analysis and solution. In addition, we enhance our
methodology by incorporating the Modified ADM, also known as the STMADM. This modification improves the convergence
rate of the series solutions, enabling a quicker approach to the true solutions of the equations at hand. Furthermore, we utilize
the New Iteration Method (NIM), or the STNIM, to introduce an iterative framework that refines our solutions. By integrating
these methods, we aim to achieve a robust series solution capable of accurately capturing the intricate dynamics represented by
the time fractional DSW equations.

To validate the present results using three different methods (i.e., the Shehu Transform Adomian Decomposition Method
(STADM), the Shehu Transform Modified Adomian Decomposition Method (STMADM), and the Shehu Transform New
Iteration Method (STNIM)), the absolute errors are shown for V(x, t) and W(X, t) in Table 1. and Table 2, respectively. In these
tables, the fractional order a is fixed at 1, and different values of x are considered specifically x = 2.5, 5, 7.5, 10. Additionally,
various time values are examined, namely t = 0.025, 0.05, 0.075, 0.1 for both V(x, t) and W(X, t), when the solution is reduced
to three terms. The examination of both tables clearly shows that the absolute error when comparing the exact solution to the
approximation derived from the STMADM is notably smaller than the absolute error observed between the exact solution and
the approximation obtained using the standard STADM for all specified values of t and x. Although there isn't an exact solution
for fractional order a.= 0.9, 0.7, 0.5, the solution using ADM and MADM has been found in Tables 3 and 4 for V(x, t) and W(X,

l4|Page


http://www.mathresearchjournal.com/

International Journal of Applied Mathematics and Numerical Research www.mathresearchjournal.com

t).

Figure 1 displays the 3D plot of the exact solution for v(x, t) in the situation of a=1, while Figures 2, 3, and 4 display the
approximate solutions for the same for ADM, MADM, and NIM, respectively. Similarly, Figure 5 displays the 3D plot of the
exact solution for w(x, t) in the case of a=1, while Figures 6, 7, and 8 display the approximate solutions for the same for ADM,
MADM, and NIM, respectively. These figures show a comparison between the exact answer and the series solution obtained
using various methods. The approximate answer we obtained using ADM, MADM, and NIM is quite similar to the actual
solution, as can be inferred from both figures. The series solution obtained using STADM and STMADM is compared with the
precise solution in Figures 9 and 10 for V and W, respectively. These figures show that in comparison to the solution produced
by STADM, the solution obtained by STMADM is closer to the exact solution.

Figures 11 and 12 illustrate the propagation of absolute error for w and v, respectively, when x = 2.5 and o = 1. It has been
determined that when solutions are produced using STMADM rather than STADM, the absolute error falls more quickly. Thus,
STMADM generally yields a smaller error in series solutions than the standard STADM due to its improved handling of
nonlinear terms. STMADM employs a modified approach to decompose the nonlinear part of the differential equation, which
allows for better convergence and accuracy in the series expansion. By systematically incorporating corrections and refining the
approximation at each step, STMADM minimizes the error more effectively than STADM, resulting in a more precise solution
to the original problem. This enhanced accuracy is particularly beneficial in cases where nonlinearities significantly influence
the behavior of the solution.

Iterative techniques like STADM and STMADM break down nonlinear terms into smaller, more manageable polynomial
components, which makes it easier to converge to a solution. By comparing the series of solutions produced by these techniques,
their efficacy is evaluated. Moreover, it has been observed that the solutions obtained through the Shehu Transform Modified
Adomian Decomposition Method (STMADM) closely resemble those derived using the Homotopy Perturbation Method (HPM)
as reported in the study (Baskonus, H. M. 2019), as well as those obtained through the New Iteration Method (NIM) as outlined
in (Ali, N., et al., 2022). This similarity suggests that the STMADM and the Shehu Transform New Iteration Method (STNIM)
yield comparable results in solving time-fractional differential equations. Therefore, it can be inferred that both STMADM and
STNIM are consistent in their approach and effectiveness when applied to this class of equations, providing reliable solutions
that align well with other established methods. The numerical values of and for various fractional orders o = 0.9, 0.7, 0.5 can be
found in (Ali, N., et al., 2022) B since STADM and STNIM yield identical results.

Table 1: Absolute error analysis for v(x, t) in case of o= 1

x| t V(exact) V(approx. STADM)V(approx. STMADM)Error (STADM)Error (STMADM)|Error (Ali, N., et al., 2022))
2.5/0.025 0.088042878 0.088030534 0.088036744 1.23 x 10 6.13 x 10 6.13 x 10
0.05| 0.097151323 0.097050333 0.09710015 1.01 x 10 513 x10°° 5.12x 10
0.075 0.10718471 0.10683608 0.10700375 3.49 x 10* 1.81 x 10 1.81 x 10+
0.1 0.11823316 0.11738777 0.11778522 8.45 x 10 448 x 10 448 x 10
5 10.025 0.00060203577 | 0.00060194272 0.0006019881 9.31 x 1078 4.77 x 10°® 4.77 x 10°®
0.05| 0.0006653454 0.00066458177 0.00066494477 7.64 x 107 4.01 x 107 4.01 x 107
0.075[ 0.00073531181 | 0.00073266682 0.00073389195 2.64 x10°¢ 1.42 x10°¢ 1.42 x10°¢
0.1 | 0.00081263476 | 0.00080619789 0.0008091019 6.44 x 1075 3.53 x10°° 3.53 x 10
7.50.025(4.05688944 x 1079 4.056262 x 10°° 4.0565679 x 10°° 6.27 x 1071° 3.21 x 10 3.21 x 10710
0.05 4.48355591 x 109 4.4784066 x 10°° 4.4808539 x 10°° 5.15x 107 2.70 x 10~ 2.70 x 10~
0.075[4.95509521 x 109 4.9372595 x 10°° 49455188 x 10°¢ 1.78 x 10°® 9.58 x 10 9.58 x 10
0.1 [5.47622664 x 109 5.4328205 x 10°° 5.4523981 x 10°° 434 x10% 238 <10 2.38x10°%®
10[0.0252.73351244 x 108 2.7330897 x 10°® 2.7332958 x 10°® 423 x 10" 2.17 x 1012 2.17 x 10"
0.05]3.02099845 x 10 3.0175289 x 10°® 3.0191778 x 10°® 3.47 x 107'° 1.82 x 1071° 1.82 x 1071°
0.0753.33891963 x 1078 3.3267019 x 10°® 3.332267 x 10°® 1.22 x 107 6.65 x 107'° 6.65 x 1071°
0.1 [3.68983383 x 10§ 3.6606088 x 10°® 3.6738002 x 10°® 2.92 x 10 1.60 x 10~ 1.60 x 10~
Table 2: Absolute error analysis for w(x, t) in case of =1
x| t w(exact) W(approx. STADM)|W(approx. STMADM)|Error (STADM) (STIIE\;I’X)ISM) Error (Ali, N, etal., 2022) [l
2.50.025] 0.34262298 0.3426173 0.34262138 5.68 x 10°° 1.60 x 10°° 1.60 x 10°¢
0.05| 0.35990985 0.35986413 0.35989677 4.57 %10 1.31 x 10 1.31 10
0.075|  0.37803829 0.37788295 0.37799312 1.55x 10 4.52x10° 4.52x10°
0.1 0.39704435 0.39667376 0.39693491 3.71 x 10+ 1.09 x 10 1.09 x 10
50.025] 0.028332214 0.028331646 0.028331649 5.68 x 1077 5.65x 107 5.65x 107
0.05| 0.029784681 0.0298008 0.0297801 1.61 x 10°° 4.58 x 10°° 458 x 10°°
0.075| 0.031311591 0.031295866 0.031295932 1.57 x 103 1.57 x 103 1.57 x 10
0.1 | 0.032916759 0.032879003 0.03287916 3.78 x 103 3.76 x 103 3.76 x 103
7.5/0.025| 0.002325765662 | 0.002325718991 0.002325718992 4.6671 x 10® 1 4.6670 x 10°® 4.6670 x 10°#
0.05]0.002445010131 | 0.0024446320058 0.002444632017 3.7813 x 107 [3.7811 x 10”7 3.7811 x 107
0.075| 0.00257036838 0.00256907585 0.002569075886 1.29253 x 10 |1.29249 x 10°° 1.29249 x 10°¢
0.1 | 0.002702153868 | 0.002699050522 0.002699050608 3.10335 x 10 |3.10326 x 10°° 3.10326 x 10°°
10/0.025/0.0001909105353| 0.0001909067042 0.0001909067042 3.8311 x 10 |3.8311 x 10~ 3.8311 x 107
0.05|0.0002006987277|  0.000200667689 0.0002006676891 3.10387 x 10® |3.10387 x 10°® 3.10387 x 10°®
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0.075|0.0002109887715| 0.0002108826732 0.0002108826732 1.06098 x 1077 |1.06098 x 107 1.06098 x 107
0.1 | 0.000221806397 | 0.00022155165657 0.00022155165662 2.54740 x 1077 |2.54740 x 1077 2.54740 x 107
Table 3: Comparison of approximate values of v(x, t) at different fractional order

X t ADM ¢=0.9 MADM ¢=0.9 ADM a=0.7 MADM a=0.7 ADM ¢=0.5 MADM 0=0.5
2.5/ 0.025 0.092566907 0.092591392 0.11161325 0.11196605 0.16658501 0.17109933
2.5| 0.05 0.10518823 0.10534733 0.13721684 0.13872933 0.2204894 0.23325784
2.5/ 0.075 0.11848991 0.11896539 0.1625566 0.16610051 0.26898029 0.29243741
25| 0.1 0.13257331 0.13360718 0.18818762 0.19467179 0.31466895 0.35078353

5 10.025| 0.00063344507 0.00063362398 0.00076614309 0.00076872083 0.0011513153 0.0011842994
51 0.05 0.00072124025 0.00072240276 0.00094508524 0.00095613626 0.0015301711 0.001623464
5 [0.075| 0.00081397228 0.00081744639 0.0011226055 0.0011484992 0.0018715629 0.002042953
5| 0.1 0.00091232422 0.00091987825 0.0013024543 0.001349831 0.0021935621 0.0024574343
7.5[/0.025| 4.2685664x 106 4.2697725%x 10°° 5.1628804x 1076 5.1802585% 10°¢ 7.7588349x 10°¢ 7.9811999x 10°¢
7.5] 0.05 | 4.8602529x 10°¢ 4.8680901x 10° 6.3688805% 10°¢ 6.443382x 10 1.031227x 1073 1.0941213x 10°°
7.5/0.075 5.48522x 10°° 5.5086411x 10°¢ 7.5653167x 10°¢ 7.7398815% 10°¢ 1.261323x 1073 1.3768672x 10°°
75| 0.1 6.1480702x 1076 6.1989964x 1076 8.7774594x 1076 9.0968543x10°¢ 1.4783499x 105 1.6562419x 103
10|0.025| 2.8761395x 10°® 2.8769521x 107® 3.4787244x 1078 3.4904337x 1078 5.2278679x 1078 5.3776968x 1078
10| 0.05 | 3.2748152x 10°® 3.2800959x 10~® 4.2913222x 10°® 4.3415212x 10°® 6.9483624x 107® 7.3721424x 1078
10]0.075| 3.6959154x 10°® 3.711696x 10°® 5.097476x 1078 5.2150973x 1078 8.4987401x 1078 9.2772737x 10°®
10| 0.1 4.1425411x 10°® 4.176855x% 1078 5.9142128% 1078 6.1294202x 10°* 9.9610589x 10~* 1.115969x 1077

Table 4: Comparison of approximate values of w(x, t) at different fractional order

X t ADM a=0.9 MADM 0=0.9 ADM 0=0.7 MADM 0=0.7 ADM a=0.5 MADM 0=0.5
2.5/0.025| 0.351296880640 0.351312964200 0.385375662930 0.385607404800 0.471840095610 0.474805396300
2.5/ 0.05 | 0.374638594810 0.374743105900 0.428133744300 0.429127243400 0.550278925810 0.558666062800
2.5/0.075| 0.398123311140 0.398435637600 0.468146449360 0.470474321500 0.617652024230 0.633060178700
2.5/ 0.10 | 0.422058898120 0.422738013200 0.507046107030 0.511305330900 0.679297078400 0.703019484100
5 10.025| 0.029060559950 0.029060569590 0.031931092470 0.031931231420 0.039260399380 0.039262177330
51 0.05 | 0.031023736250 0.031023798920 0.035544565080 0.035545160770 0.045937454130 0.045942482950
5 10.075| 0.033003132160 0.033003319430 0.038935621180 0.038937016940 0.051687777610 0.051697016150
5| 0.1 0.035024188620 0.035024595810 0.042239272280 0.042241826060 0.056958389690 0.056972613350
7.5/0.025| 0.002385561080 0.002385561090 0.002621229770 0.002621229850 0.003222986150 0.003222987130
7.5| 0.05 | 0.002546734840 0.002546734880 0.002917899850 0.002917900180 0.003771206190 0.003771208970
7.5/0.075| 0.002709242520 0.002709242620 0.003196314560 0.003196315340 0.004243345200 0.004243350310
75| 0.1 0.002875172530 0.002875172750 0.003467556890 0.003467558300 0.004676101770 0.004676109640
10|0.025| 0.000195818850 0.000195818850 0.000215163730 0.000215163730 0.000264558980 0.000264558980
10| 0.05 | 0.000209048810 0.000209048810 0.000239515930 0.000239515930 0.000309559690 0.000309559690
10]0.075| 0.000222388270 0.000222388270 0.000262369630 0.000262369630 0.000348315290 0.000348315290
10| 0.10 | 0.000236008650 0.000236008650 0.000284634590 0.000284634590 0.000383838180 0.000383838180
7. Conclusion

In this study, we extended the STADM to the STMADM along with the NIM to develop a series solution for the time fractional
Drinfeld-Sokolov-Wilson (DSW) equations. To validate our results, the absolute error is calculated for the series solutions when
a =1, where a represents the fractional time derivative and falls within the range 0 < o< 1, which were obtained with the aid of
the STADM and the STMADM. In comparison to the standard STADM, the STMADM typically yields a better approximation
with a smaller inaccuracy, this may be because STMADM enhances the convergence rate of the series solution by modifying
the decomposition process, allowing the approximate solution to reach the true solution more quickly. This improved
convergence requires fewer terms for accuracy, reducing the overall error. Also, present versions of STMADM include higher-
order approximations for nonlinear terms, allowing it to represent complex nonlinear behaviors more accurately. Lastly, it has
been observed that the solutions produced by the New Iteration Method (NIM) are fairly close to those found by the Shehu
Transform Modified Adomian Decomposition Method (STMADM). As a result, the results generated by the Shehu Transform
New Iteration Method (STNIM) and STMADM are highly similar. Thus, when applied to time-fractional differential equations,
STMADM and STNIM both yield comparable and reliable results.
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