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Abstract 

This manuscript employs the Shehu Transform in combination with the Adomian 

Decomposition Method (ADM), the Modified Adomian Decomposition Method 

(MADM), and the New Iteration Method (NIM) to obtain a series solution for the 

time-fractional Drinfeld-Sokolov-Wilson (DSW) equations. These equations model 

gravitational water flows affected by shear stress, covering situations like flows 

through vegetation, overland flows, dam breaks, and floods. To verify the accuracy of 

the solutions derived using the Shehu Transform Adomian Decomposition Method 

(STADM) and the Shehu Transform Modified Adomian Decomposition Method 

(STMADM), the relative absolute error for the series solutions is calculated for α=1, 

where α represents the fractional time derivative and lies within the range α<1. The 

Shehu transform Modified Adomian Decomposition Method (STMADM) generally 

provides a better approximation with a smaller error than the standard STADM. 

Finally, the results obtained by the Homotopy Perturbation Method (HPM) and the 

New Iteration Method (NIM) are fairly comparable to the solutions provided by the 

STMADM. This suggests that the outcomes generated by STMADM and the Shehu 

Transform New Iteration Method (STNIM) are very similar. Using both STMADM 

and STNIM to time-fractional differential equations yields comparable and reliable 

results, it can be inferred.

 

Keywords: Shehu Transform (ST), Adomian Decomposition Method (ADM), Caputo Operators and Fractional Partial 

Differential Equations (FPDE) 

 

 

 

1. Introduction 

Nonlinear partial differential equations (NPDEs), are used to describe a wide variety of complex occurrences in the sciences, 

especially in the physical sciences. Finding explicit and accurate solutions, particularly for solitary wave solutions to nonlinear 

evolution equations in mathematical physics, is a crucial part of nonlinear research.  

The Drinfeld-Sokolov-Wilson (DSW) model, introduced by Drinfeld, Sokolov, and Wilson, represents a system of nonlinear 

partial differential equations (NLPDEs) designed to simulate gravitational water flow influenced by shear stress, such as overland 

flows, dam breaks, flows through vegetation, and floods (Drinfeld V. G. et al., 1981; Drinfeld V. G. et al., 1985) [8-9]. Wilson 

(Wilson, G., 1982) [22] further expanded this model to account for dispersive water waves, which play a significant role in fluid 

dynamics. Hirota et al. later presented unique static solitons for this equation that interact with moving solitons without any 

deformation (Hirota, R., et al., 1986) [12]. 
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𝐷𝑡𝑉(𝑥, 𝑡) = −𝑎𝑊𝑥(𝑥, 𝑡)  
 

𝒟𝓉𝒲(𝑥, 𝑡) = −𝑏𝒲𝓍𝓍𝓍(𝑥, 𝑡) − 𝑐𝒱(𝑥, 𝑡)𝒲𝓍(𝑥, 𝑡) − 𝑑𝒲(𝑥, 𝑡)𝒱𝓍(𝑥, 𝑡). (1) 
 

Here, t is an independent variable, while a, b, c, and d are non-negative parameters that represent the amplitude of wave modes. 

The functions V(x, t) describe the amplitude of wave modes as they vary with time t and space x, respectively. Every NLPDE 

has an infinite number of solutions, and finding the precise solution is a challenging undertaking. Now that more potent 

computers and sophisticated computational methods have been developed, it is possible to partially treat even nonlinear 

problems. Several researchers have recently shown an interest in this standard DSW model (Hirota, R., et al., 1986; Li, Z. B. 

2007; Inc, M. 2006; Wazwaz, A. M. 2006; Zha, X. Q, et al., 2008; Guo, G. X., et al., 2010; Zhang, W. M. 2011; Ali, N., et al., 

2022) [12, 13, 3, 11, 21, 23-24].  

Many more partial differential equations (PDEs), similar to the set of PDEs mentioned above, are essential for explaining a wide 

range of mathematical and physical events. The presence of fractional-order derivatives in nonlinear partial differential equations 

(NLPDEs) makes research more interesting and difficult; as a result, these equations are referred to as fractional partial 

differential equations (FPDEs). Jaradat et al. (Jaradat et al., 2016) [14] generalized the Drinfeld Sokolov-Wilson (DSW) system 

by replacing the first-order time derivative in the equations with a fractional derivative of order α. This generalized system, 

referred to as the fractional DSW system and has important applications in both physics and engineering. 

 

𝒟𝓉
α𝒱(𝑥, 𝑡) = −𝑎𝒲(𝑥, 𝑡)𝒲𝓍(𝑥, 𝑡),   

 

𝒟𝓉
α𝒲(𝑥, 𝑡) = −𝑏𝒲𝓍𝓍𝓍(𝑥, 𝑡) − 𝑐(𝑥, 𝑡)𝒲𝓍(𝑥, 𝑡) − 𝑑𝒲(𝑥, 𝑡)𝒱𝓍(𝑥, 𝑡), 𝑡 >  1, 0 <  α ≤ 1.  (2)  

 

It has made good progress to solve nonlinear fractional/non-fractional partial differential equations with approximate analytical 

approaches. Numerous researchers have extensively studied the DSW equations to find both exact and approximate solutions 

for fractional and non-fractional orders, such as: Homotopy perturbation transform method (HPM) (Singh, P. K., et al., 2015) 

[19], Extended tanh method (Bashar, M. H., et al., 2023) [4] and singular operators method (Saifullah, S., et al., 2022) [17] etc. In 

addition to these approaches, there are several mathematical strategies are also available for solving linear and nonlinear 

differential equations, such as the Adomian decomposition method (ADM) (Adomian G., 1994; Wazwaz, A. M., 1999) [2, 20] and 

New iteration method (NIM) (Daftardar-Gejji, V., et al., 2006) [7]. Alternatively referred to as the inverse operator approach, one 

of the better methods for solving nonlinear differential equations is the integral transformation, which is comparable to the semi-

analytical approaches that were previously mentioned. Saifullah (Saifullah et al., 2022) [17] solved fractional DSW equations 

with the Laplace transform combined with the Adomian decomposition method, commonly known as (LADM). This study aims 

to address the challenges posed by the unreported findings that have yet to be identified in the field. The primary focus of this 

research is to determine the solutions of time-fractional DSW equations using Caputo fractional derivatives. To achieve this, we 

employ three advanced mathematical methods: the Shehu Transform Adomian Decomposition Method (STADM) the Shehu 

Transform Modified Adomian Decomposition Method (STMADM), and the Shehu Transform New Iteration Method (STNIM). 

This research is the first to comprehensively explore the Shehu Transform Adomian Decomposition Method (STADM) in 

relation to Mittag-Leffler type kernels and fractal fractional operators exhibiting exponential decay. These methods offer new 

insights into the behavior and solutions of complex time-fractional differential equations while enhancing both accuracy and 

efficiency. The structure of the paper is as follows: While Sections 3 and 4 provide a detailed explanation of the stages involved 

in the suggested methods, Section 2 provides basic definitions for fractional calculus. We use the recommended techniques in 

Section 5 to get approximations for the time-fractional DSW system solutions. Lastly, our findings and observations are 

presented in Section 6. 

 

2. Basics of Shehu Transformation 

We provide some fundamental concepts and characteristics of the theory of fractional calculus, which are used throughout the 

remainder of this piece of writing. 

Definition 2.1.: Consider the following set X = {f(𝑡): ∃ℳ, 𝑣1, ν2 > 0, |𝑓(𝑡)| < ℳ𝑒
|𝑡|

ν𝑖 , if, t ∈ (−1)𝑖 × [0, ∞)} 

Next, the Shehu transform of 𝑓(𝑡) ∈ 𝑋 may be expressed as follows:  

 

ℋ[f(t)] =  ℋ(u, s) = s ∫ f(t)e
−𝑠𝑡

𝑢 dt
∞

0
.  (3) 

 

The Inverse Shehu transform is also provided as: 

 

ℋ−1[𝐹(𝑠, 𝑢)] = 𝑓(𝑡), for, 𝑡 ≥ 0.  

 

Equivalently,  

 

𝑓(𝑡) = ℋ−1[𝐹(𝑠, 𝑢)] =
1

2πι
∫

1

𝑢
𝑒

𝑠𝑡

𝑢
α+𝑖∞

α−𝑖∞
𝐹(𝑠, 𝑢)𝑑𝑠.  
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In the complex plane, i.e. (s=x+iy), this integral is considered along s= α. Here, s and u are the Shehu transform variables, while 

α is a real constant. For more details, see (Maitama, S., et al., 2019) [16]. 

 

Definition 2.2.: The Caputo time derivative regarding t of order β>0 of v(x, t) in H1(a, b) is defined as (Adams, R. A. 1975: 

Belgacem, R., et al., 2019) [1, 6]: 

 

𝒟𝑡
 β

𝑣(𝑥, 𝑡) =  {

1

Γ(𝑛−𝛽)
∫ (𝑡 − 𝜁)𝑛−𝛽−1 𝜕𝑛𝑣(𝑥,𝜁)

𝜕𝜁𝑛 𝑑𝜁
𝑡

0
, if, 𝑛 − 1 < 𝛽 < 𝑛, 𝑛 ∈ 𝑁

 
𝜕𝑛𝑣(𝑥,𝜁)

𝜕𝜁𝑛 , 𝑖𝑓, 𝛽 = 𝑛
 (4) 

 

Definition 2.3.: The Shehu transform of 𝑡𝑚, i.e. (Maitama, S., et al., 2019) [16]: 

 

ℋ (
𝑡𝑚

𝑚!
) = (

𝑢

𝑠
)

𝑚

, 𝑚 = 0, 1, 2, …  

 

And  
 

ℋ (
𝑡β

Γ(β+1)
) =  (

𝑢

𝑠
)

β

, β ≻ −1.  

 

Definition 2.4: The Shehu Transform (Maitama, S. et al., 2019) [16] of 𝒟𝑡
 n𝑣(𝑥, 𝑡) regarding t of order n ≥1: 

 

ℋ[𝒟𝑡
 n𝑣(𝑥, 𝑡)] = (

𝑠

𝑢
)

n

𝑣̅(𝑥, 𝑢) − ∑ (
𝑠

𝑢
)

n−k−1

𝒟𝑡
 nv(𝑥, 𝑡)|𝑡=0

𝑛−1
𝑘=0 ,  (5)  

 

where 𝑣̅(𝑥, 𝑢) is Shehu Transform of v(x, t). 

 

Definition 2.5: The Shehu Transform (Belgacem, R., et al., 2019) [6] of 𝒟𝑡
 β

𝑣(𝑥, 𝑡) regarding t of order β >0: 

 

ℋ[𝒟𝑡
 β

𝑣(𝑥, 𝑡)] = (
𝑠

𝑢
)

β

𝑣̅(𝑥, 𝑢) − ∑ (
𝑠

𝑢
)

β−k−1

𝒟𝑡
 β

v(𝑥, 𝑡)|𝑡=0
𝑛−1
𝑘=0 ,  (6) 

 

where 𝑣̅(𝑥, 𝑢) is Shehu Transform of v(x, t) and 𝒟𝑡
 β

 is the Caputo derivative of order β > 0. 

 

3. Algorithms for the DSW system 

Consider the DSW system previously described: 

 

𝒟𝓉
α𝒱(𝑥, 𝑡) = −𝑎𝒲(𝑥, 𝑡)𝒲𝓍(𝑥, 𝑡),   

 

𝒟𝓉
α𝒲(𝑥, 𝑡) = −𝑏𝒲𝓍𝓍𝓍(𝑥, 𝑡) − 𝑐(𝑥, 𝑡)𝒲𝓍(𝑥, 𝑡) − 𝑑𝒲(𝑥, 𝑡)𝒱𝓍(𝑥, 𝑡), 𝑡 >  1, 0 <  𝛼 ≤ 1.  

 

Where, 0 < α ≤ 1 and the initial conditions are v(x, 0) = f(x) and w(x, 0) = g(x). Where f(x) and g(x) are two known functions of 

the dependent variable x. To solve the aforementioned system of equations under the given initial conditions, take the ST of both 

sides of the system of equations as:  

 

ℋ[𝒟𝓉
α𝑣(𝑥, 𝑡)] = −𝑎ℋ[𝑤(𝑥, 𝑡)𝑤𝑥(𝑥, 𝑡)],   

 

ℋ[𝒟𝓉
β

𝑤(𝑥, 𝑡)] = −𝑏ℋ[𝑤𝑥𝑥𝑥(𝑥, 𝑡)] − 𝑐ℋ[𝑣(𝑥, 𝑡)𝑤𝑥(𝑥, 𝑡)] − 𝑑ℋ[𝑤(𝑥, 𝑡)𝑣𝑥(𝑥, 𝑡)].  

 

Or 

 

(
𝑠

𝑢
)

α

𝑉(𝑥, 𝑠, 𝑢) − (
𝑠

𝑢
)

α−1

𝑣(𝑥, 0) = −𝑎ℋ[𝑤(𝑥, 𝑡)𝑤𝑥(𝑥, 𝑡)],   

 

(
𝑠

𝑢
)

β

𝑊(𝑥, 𝑠, 𝑢) − (
𝑠

𝑢
)

β−1

𝑤(𝑥, 0) = −𝑏ℋ[𝑤𝑥𝑥𝑥(𝑥, 𝑡)] − 𝑐ℋ[𝑣(𝑥, 𝑡)𝑤𝑥(𝑥, 𝑡)] − 𝑑ℋ[𝑤(𝑥, 𝑡)𝑣𝑥(𝑥, 𝑡)].  

 

Or 

 

𝑉(𝑥, 𝑠, 𝑢) = 𝑓(𝑥) (
𝑢

𝑠
) − 𝑎 (

𝑢

𝑠
)

α

ℋ[𝑤(𝑥, 𝑡)𝑤𝑥(𝑥, 𝑡)],   
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𝑊(𝑥, 𝑠, 𝑢) = 𝑔(𝑥) (
𝑢

𝑠
) − 𝑏 (

𝑢

𝑠
)

β

ℋ[𝑤𝑥𝑥𝑥(𝑥, 𝑡)] − 𝑐 (
𝑢

𝑠
)

β

ℋ[𝑣(𝑥, 𝑡)𝑤𝑥(𝑥, 𝑡)] − 𝑑 (
𝑢

𝑠
)

β

ℋ[𝑤(𝑥, 𝑡)𝑣𝑥(𝑥, 𝑡)].  

 

Applying the inverse Shehu transform to above equations we get,  

 

𝑣(𝑥, 𝑡) = 𝑓(𝑥) − 𝑎ℋ−1 [(
𝑢

𝑠
)

αℋ
[𝑤(𝑥, 𝑡)𝑤𝑥(𝑥, 𝑡)]],   

 

𝑤(𝑥, 𝑡) = 𝑔(𝑥) − 𝑏ℋ−1 [(
𝑢

𝑠
)

β

ℋ[𝑤𝑥𝑥𝑥(𝑥, 𝑡)]] − 𝑐ℋ−1 [(
𝑢

𝑠
)

β

ℋ[𝑣(𝑥, 𝑡)𝑤𝑥(𝑥, 𝑡)]] − 𝑑ℋ−1 [(
𝑢

𝑠
)

β

ℋ[𝑤(𝑥, 𝑡)𝑣𝑥(𝑥, 𝑡)]].  

 

Or 

 

𝑣(𝑥, 𝑡) = 𝑓(𝑥) − 𝑎ℋ−1 [(
𝑢

𝑠
)

α

ℋ[𝒩1]],  (7) 

 

𝑤(𝑥, 𝑡) = 𝑔(𝑥) −  𝑏ℋ−1 [(
𝑢

𝑠
)

𝛽

ℋ[ℒ]] −  𝑐 ℋ−1 [(
𝑢

𝑠
)

𝛽

ℋ[𝒩2]]  − 𝑑ℋ−1 [(
𝑢

𝑠
)

𝛽

ℋ[𝒩3]].  (8)  

 

Here, 𝒩1, 𝒩2 and 𝒩3 represents nonlinear terms of differential equations, while L represents the linear part of the same. Let 

there be a series solution to the initial differential equations as:  

 

𝑣(𝑥, 𝑡) = ∑ 𝑣𝑖(𝑥, 𝑡)∞
𝑖=0 𝑎𝑛𝑑 𝑤(𝑥, 𝑡) = ∑ 𝑤𝑖(𝑥, 𝑡)∞

𝑖=0 . 

 

Decomposition of non-linear terms 𝒩1 = 𝑤(𝑥, 𝑡)𝑤𝑥(𝑥, 𝑡), 𝒩2 = 𝑣(𝑥, 𝑡)𝑤𝑥(𝑥, 𝑡)𝑎𝑛𝑑 𝒩3 = 𝑤(𝑥, 𝑡)𝑣𝑥(𝑥, 𝑡) will be made by 

Adomian polynomials 𝐴𝑛, 𝐵𝑛, and 𝐶𝑛 respectively. 

 

𝒩1 = ∑ 𝐴𝑛
∞
𝑛=0 , 𝒩2 = ∑ 𝐵𝑛

∞
𝑛=0 , 𝒩3 = ∑ 𝐶𝑛

∞
𝑛=0 .c 

 

To solve the DSW system the few Adomian polynomials are calculated for 𝒩1 = 𝑤(𝑥, 𝑡)𝑤𝑥(𝑥, 𝑡) 

 

A₀ = w₀ (w₀)ₓ 

 

A₁ = d/dλ [ (w₀ + λw₁)(w₀ + λw₁)ₓ ] |λ=0  

 

= w₁(w₀)ₓ + w₀(w₁)ₓ 

 

A₂ = (1 / 2!) * d²/dλ² [ (w₀ + λw₁ + λ²w₂)(w₀ + λw₁ + λ²w₂)ₓ ] |λ=0  

 

= w₂(w₀)ₓ + w₁(w₁)ₓ + w₀(w₂)ₓ 

 

A₃ = (1 / 3!) * d³/dλ³ [ (w₀ + λw₁ + λ²w₂ + λ³w₃)(w₀ + λw₁ + λ²w₂ + λ³w₃)ₓ ] |λ=0  

 

… =... 

 

In general, Adomian Polynomials for N1 are calculated as below 

 

𝐴𝑛 =
1

𝑛!

𝑑𝑛

𝑑λ𝑛 𝑁1((∑ λ𝑘𝑤𝑘
𝑛
𝑘=0 )(∑ λ𝑘(𝑤𝑘)𝑥

𝑛
𝑘=0 ))|λ=0.  (9) 

 

Similarly, we have Adomian polynomials for 𝒩2 = v(x, t)wx(x, t)as follows: 

 

𝐵0 = 𝑣0(𝑤0)ₓ  
 

𝐵1 = 𝑑/𝑑𝜆[(𝑣0 + 𝜆𝑣1)(𝑤0 + 𝜆(𝑤1)ₓ)]|λ=0  
 

= 𝑣1(𝑤0)ₓ + 𝑣0(𝑤1)ₓ  
 

𝐵2 = (1/2!) ∗ 𝑑2/𝑑𝜆2[(𝑣0 + 𝜆𝑣1 + 𝜆2𝑣2)(𝑤0 + 𝜆𝑤1 + 𝜆2𝑤2)ₓ]|λ=0  
 

= 𝑣2(𝑤0)ₓ + 𝑣1(𝑤1)ₓ + 𝑣0(𝑤2)ₓ  
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…  =  …  

 

In general, Adomian Polynomials for N2 are calculated as below: 

 

𝐵𝑛 =
1

𝑛!

𝑑𝑛

𝑑λ𝑛 𝑁2((∑ λ𝑘𝑣𝑘
𝑛
𝑘=0 )(∑ λ𝑘(𝑤𝑘)𝑥

𝑛
𝑘=0 ))|λ=0.  (10) 

 

Similarly, we have Adomian polynomials for 𝒩3 = w(x, t)vx(x, t)as follows: 

 

C₀ = w₀ (v₀)ₓ 

 

C₁ = d/dλ [ (w₀ + λw₁)(v₀ + λv₁)ₓ ]|λ=0 

 

= w₁(v₀)ₓ + w₀(v₁)ₓ 

 

C₂ = (1 / 2!) * d²/dλ² [ (w₀ + λw₁ + λ²w₂)(v₀ + λv₁ + λ²v₂)ₓ ] |λ=0  

 

= w₀(v₂)ₓ + w₁(v₁)ₓ + w₂(v₀)ₓ 

 

... =... 

 

In general, Adomian Polynomials for N3 are calculated as below: 

 

𝐶𝑛 =
1

𝑛!

𝑑𝑛

𝑑λ𝑛 𝑁3((∑ λ𝑘𝑤𝑘
𝑛
𝑘=0 )(∑ λ𝑘(𝑣𝑘)𝑥

𝑛
𝑘=0 ))|λ=0.  (11)  

 

To obtain a series solution following recurrence formula will be used,  

 

𝑣𝑛(𝑥, 𝑡) = 𝑓(𝑥) − 𝑎ℋ−1 [(
𝑢

𝑠
)

α

ℋ[𝐴𝑛−1]],   

 

𝑤𝑛(𝑥, 𝑡) = 𝑔(𝑥) −  𝑏ℋ−1 [(
𝑢

𝑠
)

𝛽

ℋ[ℒ]] −  𝑑ℋ−1 [(
𝑢

𝑠
)

𝛽

ℋ[𝐶𝑛−1]] (12) 

 

4. Implementation of STADM 

By employing the suggested methodologies as described below, we can derive the series solutions for the fractionally coupled 

DSW problem. 

 

𝒟𝓉
α𝒱(𝑥, 𝑡) = −3𝒲(𝑥, 𝑡)𝒲𝓍(𝑥, 𝑡),   

 

𝒟𝓉
α𝒲(𝑥, 𝑡) = −2𝒲𝓍𝓍𝓍(𝑥, 𝑡) − 2(𝑥, 𝑡)𝒲𝓍(𝑥, 𝑡) − 𝒲(𝑥, 𝑡)𝒱𝓍(𝑥, 𝑡), 𝑡 >  1, 0 <  𝛼 ≤ 1.  (13)  

 

subjected to the initial guesses conditions: 

 

𝒱(𝑥, 0) = 3 sec ℎ2 𝑥 𝑎𝑛𝑑 𝒲(𝑥, 0) = 2 sec ℎ 𝑥.  
 

For α = 1, this system of equations has exact solution as: 

 

𝒱(𝑥, 𝑡) = 3𝑠𝑒𝑐ℎ2(𝑥 − 2𝑡),   
 

𝒲(𝑥, 𝑡) = 2𝑠𝑒𝑐ℎ(𝑥 − 2𝑡).  

 

As explained in the section 3 the iteration scheme for calculating the series components is as follows: 

 

𝑣𝑖(𝑥, 𝑡) = 3 sec ℎ2 𝑥 − 3ℋ−1 [(
𝑢

𝑠
)

α

ℋ[∑ 𝐴𝑖
∞
𝑖=0 ]],   

 

𝑤𝑖(𝑥, 𝑡) = 2 sec ℎ 𝑥 −  𝑏ℋ−1 [(
𝑢

𝑠
)

𝛽

ℋ[ℒ𝑖]] −  𝑐 ℋ−1 [(
𝑢

𝑠
)

𝛽

ℋ[∑ 𝐵𝑖
∞
𝑖=0 ]]  − 𝑑ℋ−1 [(

𝑢

𝑠
)

𝛽

ℋ[∑ 𝐶𝑖
∞
𝑖=0 ]].  

 

Let, v0(x, t) = 3 sec h2 x and w0(x, t) = 2 sec h x. 

The few terms are calculated below: 
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𝒱1(𝑥, 𝑡) = −3ℋ−1 [(
𝑢

𝑠
)

α

ℋ[−4sech
2(𝑥) tan ℎ 𝑥]]  

 

= 12sech
2(𝑥) tan ℎ 𝑥

𝑡α

Γ(α+1)
,   

 

𝑊1(𝑥, 𝑡)  =  2ℋ−1 [(
𝑢

𝑠
)

𝛼

ℋ[2 tan ℎ 𝑥 (tan ℎ2 𝑥 − 5sech
4(𝑥)]]  +

2ℋ−1 [(
𝑢

𝑠
)

𝛼

ℋ[6 tan ℎ 𝑥 sech
3(𝑥)]] 2ℋ−1 [(

𝑢

𝑠
)

𝛼

ℋ[12 tan ℎ 𝑥 sech
3(𝑥)]]  

 

= 4 tanh(𝑥) sec ℎ (𝑥)
𝑡𝛼

Γ(𝛼+1)
  

 

Similarly,  

 

𝑉2(𝑥, 𝑡) = −3ℋ−1 [(
𝑢

𝑠
)

α

ℋ[8(2 sec ℎ2 (𝑥) − 3 sec ℎ4 (𝑥))]]  

 

= 24(−3 sec ℎ4 (𝑥) + 2 sec ℎ2 (𝑥))
𝑡2α

Γ(2α+1)
.  

 

𝒲2(𝑥, 𝑡) = 2ℋ−1 ((
𝑢

𝑠
)

α

ℋ [
𝑡α

Γ(α+1)
(4(− tanh4(𝑥) 𝑠𝑒𝑐ℎ(𝑥) + 18 tanh2(𝑥) 𝑠𝑒𝑐ℎ3 − 5𝑠𝑒𝑐ℎ5(𝑥)))])  

 

+2ℋ−1 ((
𝑢

𝑠
)

α

ℋ [
𝑡α

Γ(α+1)
⋅ 6 tanh(𝑥) 𝑠𝑒𝑐ℎ3(𝑥)])  

 

+ℋ−1 ((
𝑢

𝑠
)

α

ℋ [−12 𝑠𝑒𝑐ℎ3(𝑥) ⋅
𝑡α

Γ(α+1)
, −24𝑠𝑒𝑐ℎ3(𝑥)(3 − 4𝑠𝑒𝑐ℎ3(𝑥))])  

 

= 8(−2 𝑠𝑒𝑐ℎ3(𝑥) + 𝑠𝑒𝑐ℎ(𝑥)) ⋅
𝑡2α

Γ(2α+1)
  

 

The same procedure can be used to calculate other series terms. The whole solution is now written out as the sum of these terms: 

 

𝑣(𝑥, 𝑡) = 3𝑠𝑒𝑐ℎ2(𝑥) [1 + 4 ta n ℎ 𝑥
𝑡𝛼

Γ(𝛼+1)
+ 8(−3 sec ℎ2 (𝑥) + 2)

𝑡2𝛼

Γ(2𝛼+1)
+ ⋯ ] (14) 

 

𝑤(𝑥, 𝑡) = 2se c ℎ (𝑥) [1 + 2ta n ℎ 𝑥
𝑡𝛼

Γ(𝛼+1)
+ 4(−2 sec ℎ2 (𝑥) + 1)

𝑡2𝛼

Γ(2𝛼+1)
+ ⋯ ].  (15)  

 

The series of solutions described above had previously been determined by many researchers using several approaches see 

(Baskonus, H. M. 2019) [5]. 

 

Theorem 1: The solution 𝑤(𝑥, 𝑡) = ∑ 𝑤𝑖(𝑥, 𝑡)∞
𝑖=0  using ADM is convergent if 0<k<1 and ‖𝑤𝑛‖ < ∞ where k = 

(𝐿1+𝐿2)𝑡𝛼

Γ(𝛼+1)
 where 

𝐿1 is the Lipschitz constant for a linear term and 𝐿2 is lipschtiz constant for the nonlinear term. For more details see (Baskonus, 

H. M. 2019) [5]. 

 

4. Solution with Modified Adomian Polynomials 

Since the nonlinear linear term will be broken down using the modified Adomian polynomial, this technique will be known as 

the Shehu Transform Modified Adomian Decomposition Method (STMADM). As this is explained in (Wazwaz, A. M. (1999) 

[20] the modified Adomian polynomials are calculated as below: 

 

An
̅̅̅̅ = f(Sn) − ∑ Ai

n−1
i=0   (16) 

 

where Sn = ∑ wi ∑ (wi)x
n
i=0

n
i=0  and f is a symbol for the nonlinear part. 

The few revised polynomials for N1 is 𝐴0
̅̅ ̅ = 𝑤0(𝑤0)𝑥 

 

𝐴1
̅̅ ̅ = 𝒩1((𝑤0 + 𝑤1)(𝑤0 + 𝑤1)𝑥) − 𝐴0

̅̅ ̅  

 

= ((𝑤0 + 𝑤1)(𝑤0 + 𝑤1)𝑥) − 𝑤0(𝑤0)𝑥  
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= 𝑤1(𝑤0)𝑥 + 𝑤0(𝑤1)𝑥 + 𝑤1(𝑤1)𝑥.  

 

𝐴2
̅̅ ̅ = 𝒩1((𝑤0 + 𝑤1 + 𝑤2)(𝑤0 + 𝑤1 + 𝑤2)𝑥) − (𝐴0

̅̅ ̅ + 𝐴1
̅̅ ̅)  

 

= ((𝑤0 + 𝑤1 + 𝑤2)(𝑤0 + 𝑤1 + 𝑤2)𝑥) − (𝑤0(𝑤0)𝑥 + 𝑤1(𝑤0)𝑥 + 𝑤0(𝑤1)𝑥 + 𝑤1(𝑤1)𝑥)  

 

= 𝑤0(𝑤2)𝑥 + 𝑤1(𝑤2)𝑥 + 𝑤2(𝑤1)𝑥 + 𝑤2(𝑤0)𝑥 + 𝑤2(𝑤2)𝑥  

 

Similarly, this is calculated for N_2 

 

𝐵0
̅̅ ̅ = 𝑣0(𝑤0)𝑥  

 

𝐵1
̅̅ ̅ = 𝒩1((𝑣0 + 𝑣1)(𝑤0 + 𝑤1)𝑥) − 𝐵0

̅̅ ̅  

 

= ((𝑣0 + 𝑣1)(𝑤0 + 𝑤1)𝑥) − 𝑣0(𝑤0)𝑥  

 

= 𝑣1(𝑤0)𝑥 + 𝑣0(𝑤1)𝑥 + 𝑣1(𝑤1)𝑥  

 

𝐵2
̅̅ ̅ = 𝒩1((𝑣0 + 𝑣1 + 𝑣2)(𝑤0 + 𝑤1 + 𝑤2)𝑥) − (𝐵0

̅̅ ̅ + 𝐵1
̅̅ ̅)  

 

= ((𝑣0 + 𝑣1 + 𝑣2)(𝑤0 + 𝑤1 + 𝑤2)𝑥) − (𝑣1(𝑤0)𝑥 + 𝑣0(𝑤1)𝑥 + 𝑣1(𝑤1)𝑥 + 𝑣0(𝑤0)𝑥)  

 

= 𝑣0(𝑤2)𝑥 + 𝑣1(𝑤2)𝑥 + 𝑣2(𝑤2)𝑥 + 𝑣2(𝑤1)𝑥 + 𝑣2(𝑤0)𝑥  

 

Similarly, this is calculated for N3 

 

𝐶0
̅̅ ̅ = 𝑤0(𝑣0)𝑥  

 

𝐶1
̅̅ ̅ = 𝒩1((𝑤0 + 𝑤1)(𝑣0 + 𝑣1)𝑥) − 𝐶0

̅̅ ̅  

 

= ((𝑤0 + 𝑤1)(𝑣0 + 𝑣1)𝑥) − 𝑤0(𝑣0)𝑥  

 

= 𝑤0(𝑣1)𝑥 + 𝑤1(𝑣0)𝑥 + 𝑤1(𝑣1)𝑥  

 

𝐶2
̅̅ ̅ = 𝒩1((𝑤0 + 𝑤1 + 𝑤2)(𝑣0 + 𝑣1 + 𝑣2)𝑥) − (𝐶0

̅̅ ̅ + 𝐶1
̅̅ ̅)  

 

= ((𝑤0 + 𝑤1 + 𝑤2)(𝑣0 + 𝑣1 + 𝑣2)𝑥) − (𝑤0(𝑣1)𝑥 + 𝑤1(𝑣0)𝑥 + 𝑤1(𝑣1)𝑥 + 𝑤0(𝑣0)𝑥)  

 

= 𝑤0(𝑣2)𝑥 + 𝑤1(𝑣2)𝑥 + 𝑤2(𝑣1)𝑥 + 𝑤2(𝑣0)𝑥 + 𝑤2(𝑣2)𝑥  

 

Then the revised iteration scheme is as follows 

 

𝑣𝑛(𝑥, 𝑡) = 𝑓(𝑥) − 𝑎ℋ−1 [(
𝑢

𝑠
)

α

ℋ[𝐴𝑛−1
̅̅ ̅̅ ̅̅ ]],  (17) 

 

𝑤𝑛(𝑥, 𝑡) = 𝑔(𝑥)  −  𝑏 ℋ−1 [(
𝑢

𝑠
)

𝛽

ℋ[𝐿]]  −  𝑐 ℋ−1 [(
𝑢

𝑠
)

𝛼

ℋ[𝐵𝑛−1
̅̅ ̅̅ ̅̅ ]]  −  𝑑ℋ−1 [(

𝑢

𝑠
)

𝛼

ℋ[𝐶𝑛−1
̅̅ ̅̅ ̅̅ ]]  (18) 

 

Terms are calculated with modified ADM as follows: 

Let,  

 

𝑣0(𝑥, 𝑡) = 3 sec ℎ2 𝑥 and 𝑤0(𝑥, 𝑡) = 2 sec ℎ 𝑥. 

 

𝒱1(𝑥, 𝑡) = −3ℋ−1 [(
𝑢

𝑠
)

α

ℋ[−4 sec2 ℎ 𝑥 tan ℎ 𝑥]]  

 

= 12 sec2 ℎ 𝑥 tan ℎ 𝑥
𝑡α

Γ(α+1)
,   
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𝑊1(𝑥, 𝑡)  =  2 ℋ−1 [(
𝑢

𝑠
)

𝛼

ℋ[2 𝑡𝑎𝑛ℎ (𝑥) ( tanh2(𝑥) −  5  sec2 ℎ 𝑥]]  

+ 2 ℋ−1 [(
𝑢

𝑠
)

𝛼

ℋ[6𝑡𝑎𝑛 ℎ(𝑥) sec3 ℎ 𝑥]]    + ℋ−1 [(
𝑢

𝑠
)

𝛼

ℋ[12 𝑡𝑎𝑛 ℎ(𝑥) sec3 ℎ 𝑥]]   

 

 = 4 tanh(𝑥)  𝑠𝑒𝑐ℎ(𝑥) ⋅
𝑡α

Γ(α+1)
  

 

Again,  

 

𝒱2(𝑥, 𝑡) = −3ℋ−1 [(
𝑢

𝑠
)

α

ℋ[𝐴1
̅̅ ̅]],   

 

= −3ℋ−1 [(
𝑢

𝑠
)

α

ℋ[𝑤1(𝑤0)𝑥 + 𝑤0(𝑤1)𝑥 + 𝑤1(𝑤1)𝑥]],   

 

 

𝒱2(𝑥, 𝑡) = 24(−3 sec ℎ4 (𝑥) + 2 sec ℎ2 (𝑥))  

 

 
𝑡2α

Γ(2α+1)
− 48(4 sec ℎ3 (𝑥) tanh3(𝑥) − 3 sec ℎ5 (𝑥) tanh(𝑥))

Γ(2α+1)

Γ(3α+1)Γ(α+1)2 𝑡3α.  

 

𝒲2(𝑥, 𝑡) = −2(72 sec ℎ3 (𝑥) tanh2(𝑥) − 5𝑠𝑒𝑐ℎ5(𝑥) − 4 sec ℎ (𝑥) tanh4(𝑥))
𝑡2α

Γ(2α+1)
− 2(−24 sec ℎ3 (𝑥) tanh2(𝑥) +

12 sec ℎ5 (𝑥) − 12 sec ℎ3 (𝑥) tanh2(𝑥))
𝑡2α

Γ(2α+1)
  

 

−2 ∗ 48(sec ℎ5 (𝑥) tanh(𝑥) − sec ℎ3 (𝑥) tanh3(𝑥))
Γ(2α+1)

Γ(3α+1)Γ(α+1)2 𝑡3α  

 

−2 ∗ 12(sec ℎ5 (𝑥) − 3 sec ℎ3 (𝑥) tanh3(𝑥) +)
𝑡2α

Γ(2α+1)
− 2 ∗ 24(sec ℎ5 (𝑥) tanh(𝑥) −

2 sec ℎ3 (𝑥) tanh3 )
Γ(2α+1)

Γ(3α+1)Γ(α+1)2 𝑡3α  

 

𝒲2(𝑥, 𝑡) = 8(−2 sec ℎ3 (𝑥) + sec ℎ (𝑥))
𝑡2α

Γ(2α+1)
+ 48(4 sec ℎ3 (𝑥) tanh3(𝑥) − 3 sec ℎ5 (𝑥) tanh(𝑥))

Γ(2α+1)

Γ(3α+1)Γ(α+1)2 𝑡3α

  

 

and so on.... 

The three terms solution to the above problem is given below: 

 

𝒱(𝑥, 𝑡) = 3 sec ℎ2 𝑥 + 12 sec2 ℎ 𝑥 tan ℎ 𝑥
𝑡α

Γ(α+1)
+ (48 sec ℎ2 (𝑥) tanh2(𝑥) − 24 sec ℎ4 (𝑥))  

 
𝑡2α

Γ(2α+1)
− 48 sec ℎ2 (𝑥) tanh(𝑥) (sec ℎ2 (𝑥) − tanh2(𝑥))

Γ(2α+1)

Γ(3α+1)Γ(α+1)2 𝑡3α  

 

𝒱(𝑥, 𝑡) = 3 sec ℎ2 [1 + 4 tan ℎ 𝑥
𝑡α

Γ(α+1)
+ 8(−3 sec ℎ2 (𝑥) + 2)

𝑡2α

Γ(2α+1)
− 48/3 tan ℎ 𝑥(2 sec ℎ2 (𝑥) −

 1)
Γ(2α+1)

Γ(3α+1)Γ(α+1)2 𝑡3α] (19)  

 

𝒲(𝑥, 𝑡) = 2 sec ℎ 𝑥 + 4 tanh(𝑥) sec ℎ (𝑥)
𝑡α

Γ(α+1)
+ 8(−2 sec ℎ3 (𝑥) + sec ℎ (𝑥))

𝑡2α

Γ(2α+1)
+ 48(4 sec ℎ3 (𝑥) tanh3(𝑥) −

3 sec ℎ5 (𝑥) tanh(𝑥))
Γ(2α+1)

Γ(3α+1)Γ(α+1)2 𝑡3α  

 

=  [2 sec ℎ(𝑥)[ 1 +  2 tanh (𝑥) 
𝑡𝛼

Γ(𝛼+1)
 + 4( −2 − 2 sec ℎ2 (𝑥) + 1) 

𝑡2𝛼

Γ(2𝛼+1)
 +

24 tan ℎ 𝑥(4 sec ℎ2 (𝑥) tanh2(𝑥) 3 sec ℎ4 (𝑥))
Γ(2𝛼+1)

Γ(3𝛼+1)Γ(𝛼+1)2 𝑡3𝛼]  (20) 
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5. Solution with NIM 

Instead of decomposing the nonlinear terms with ADM and MADM, we use the iteration method as follows and decompose the 

term N(x, t) by New iteration approach as given below: 

 

𝒩(𝑥, 𝑡) = ∑ 𝐺𝑛
∞
𝑛=0 ,   

 

𝐺0 = 𝒩(𝑣0) 𝑎𝑛𝑑  
 

𝒩𝑣(𝑥, 𝑡) = ∑ 𝐺𝑛
∞
𝑛=0 = ∑ (𝒩(∑ 𝑣𝑖

𝑛
𝑖=0 ) − 𝒩(∑ 𝑣𝑖

𝑛−1
𝑖=0 ))∞

𝑛=0 , 𝑛 = 1, 2, … (21) 

 

The decomposition of nonlinear polynomials N1 is taken as follows: 

 

𝐺0 = 𝑤0(𝑤0)𝑥,   
 

𝐺1 = 𝒩1((𝑤0 + 𝑤1)(𝑤0 + 𝑤1)𝑥) − 𝒩1(𝑤0(𝑤0)𝑥)  

 

= ((𝑤0 + 𝑤1)(𝑤0 + 𝑤1)𝑥) − 𝑤0(𝑤0)𝑥  

 

= 𝑤1(𝑤0)𝑥 + 𝑤0(𝑤1)𝑥 + 𝑤1(𝑤1)𝑥  

 

𝐺2 = 𝒩1((𝑤0 + 𝑤1 + 𝑤2)(𝑤0 + 𝑤1 + 𝑤2)𝑥) − 𝒩1((𝑤0 + 𝑤1)(𝑤0 + 𝑤1)𝑥)  

 

= ((𝑤0 + 𝑤1 + 𝑤2)(𝑤0 + 𝑤1 + 𝑤2)𝑥) − (𝑤0(𝑤0)𝑥 + 𝑤1(𝑤0)𝑥 + 𝑤0(𝑤1)𝑥 + 𝑤1(𝑤1)𝑥)  

 

= 𝑤0(𝑤2)𝑥 + 𝑤1(𝑤2)𝑥 + 𝑤2(𝑤1)𝑥 + 𝑤2(𝑤0)𝑥 + 𝑤2(𝑤2)𝑥  

 

Similarly, this is calculated for N2 

 

𝑃0 = 𝑣0(𝑤0)𝑥  
 

𝑃1 = 𝒩1((𝑣0 + 𝑣1)(𝑤0 + 𝑤1)𝑥) − 𝒩0(𝑣0(𝑤0)𝑥)  

 

= ((𝑣0 + 𝑣1)(𝑤0 + 𝑤1)𝑥) − 𝑣0(𝑤0)𝑥  

 

= 𝑣1(𝑤0)𝑥 + 𝑣0(𝑤1)𝑥 + 𝑣1(𝑤1)𝑥  
 

𝑃2 = 𝒩2((𝑣0 + 𝑣1 + 𝑣2)(𝑤0 + 𝑤1 + 𝑤2)𝑥) − 𝒩2((𝑣0 + 𝑣1)(𝑤0 + 𝑤1)𝑥)  

 

= ((𝑣0 + 𝑣1 + 𝑣2)(𝑤0 + 𝑤1 + 𝑤2)𝑥) − (𝑣1(𝑤0)𝑥 + 𝑣0(𝑤1)𝑥 + 𝑣1(𝑤1)𝑥 + 𝑣0(𝑤0)𝑥)  

 

= 𝑣0(𝑤2)𝑥 + 𝑣1(𝑤2)𝑥 + 𝑣2(𝑤2)𝑥 + 𝑣2(𝑤1)𝑥 + 𝑣2(𝑤0)𝑥  

 

Similarly, this is calculated for N_3 

 

𝐾0 = 𝑤0(𝑣0)𝑥,   

 

𝐾1 = 𝒩3((𝑤0 + 𝑤1)(𝑣0 + 𝑣1)𝑥) − 𝒩3(𝑤0(𝑣0)𝑥)  

 

= (𝑤0 + 𝑤1)(𝑣0 + 𝑣1)𝑥 − 𝑤0(𝑣0)𝑥  
 

= 𝑤0(𝑣1)𝑥 + 𝑤1(𝑣0)𝑥 + 𝑤1(𝑣1)𝑥,   
 

𝐾2 = 𝒩3((𝑤0 + 𝑤1 + 𝑤2)(𝑣0 + 𝑣1 + 𝑣2)𝑥) − 𝒩3((𝑤0 + 𝑤1)(𝑣0 + 𝑣1)𝑥)  

 

= (𝑤0 + 𝑤1 + 𝑤2)(𝑣0 + 𝑣1 + 𝑣2)𝑥 − [𝑤0(𝑣0)𝑥 + 𝑤0(𝑣1)𝑥 + 𝑤1(𝑣0)𝑥 + 𝑤1(𝑣1)𝑥]  
 

= 𝑤0(𝑣2)𝑥 + 𝑤1(𝑣2)𝑥 + 𝑤2(𝑣0)𝑥 + 𝑤2(𝑣1)𝑥 + 𝑤2(𝑣2)𝑥  
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The series components are computed using the new iteration approach as shown below: 

 

𝒱1(𝑥, 𝑡) = 12 sec2 ℎ 𝑥 tan ℎ 𝑥
𝑡α

Γ(α+1)
,   

 

𝒱2(𝑥, 𝑡) = (48 sec ℎ2 (𝑥) tanh2(𝑥) − 24 sec ℎ4 (𝑥))
𝑡2α

Γ(2α+1)
− 48 sec ℎ2 (𝑥) tanh(𝑥) (sec ℎ2 (𝑥) −

tanh2(𝑥))
Γ(2α+1)

Γ(3α+1)Γ(α+1)2 𝑡3α.  

 

𝒲1(𝑥, 𝑡) = 4 tanh(𝑥) sec ℎ (𝑥)
𝑡α

Γ(α+1)
,   

 

𝒲2(𝑥, 𝑡) = 8(−2 sec ℎ3 (𝑥) + sec ℎ (𝑥))
𝑡2α

Γ(2α+1)
+ 48(4 sec ℎ3 (𝑥) tanh3(𝑥) − 3 sec ℎ5 (𝑥) tanh(𝑥))

Γ(2α+1)

Γ(3α+1)Γ(α+1)2 𝑡3α.

  

Consequently, NIM’s approximate series solution up to three terms is 

 

𝒱(𝑥, 𝑡) = 3 sec ℎ2 [1 + 4 tan ℎ 𝑥
𝑡α

Γ(α+1)
+ 8(−3 sec ℎ2 (𝑥) + 2)

𝑡2α

Γ(2α+1)
− 48/3 tan ℎ 𝑥(2 sec ℎ2 (𝑥) −

1)
Γ(2α+1)

Γ(3α+1)Γ(α+1)2 𝑡3α] (22)  

 

𝒲(𝑥, 𝑡) =  [2 𝑠𝑒𝑐 ℎ(𝑥)[ 1 +  2 𝑡𝑎𝑛ℎ (𝑥) 
𝑡𝛼

Γ(𝛼+1)
 +  4( −2 − 2 sec ℎ2 (𝑥) +

1) 
𝑡2𝛼

Γ(2𝛼+1)
24 𝑡𝑎𝑛 ℎ 𝑥(4 sec ℎ2 (𝑥) tanh2(𝑥)  − 3 sec ℎ4 (𝑥))

Γ(2𝛼+1)

Γ(3𝛼+1)Γ(𝛼+1)2 𝑡3𝛼]  (23) 

 

This series solution matches the series solution obtained in (Ali, N., et al., 2022). 

 

Theorem 2: If the function 𝒩 is infinitely differentiable (i.e., 𝐶∞) in the neighborhood of the point 𝒲₀, and the norm ‖𝒩ⁿ(𝒲₀)‖ 

is bounded by K>0 for all n, and if the sequence {𝒲ᵢ} satisfies ‖𝒲ᵢ‖ ≤ Z < 1/e for i = 1, 2,..., then the series ∑Gₙ is convergent. 

Additionally, for n = 1, 2..., every term in the series meets the inequality: ‖Gₙ‖ ≤ K Zⁿ eⁿ⁻¹ (e − 1), for n = 1, 2..., (For more details 

see (Ali, N., et al., 2022) [3]. 

 

 
 

Fig 1: 3D plot of exact solutions to v for α = 1 
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Fig 2: 3D plot of approximate solution with ADM to v for α = 1. 

 

 
 

Fig 3: 3D plot of approximate solution with MADM to v for α = 1 
 

 
 

Fig 4: 3D plot of approximate solution with NIM to v for α = 1 
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Fig 5: 3D plot of exact solution to w for α = 1 

 

 
 

Fig 6: 3D plot of approx solution with ADM to w for α = 1.  
 

 
 

Fig 7: 3D plot of approximate solution with MADM 
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Fig 8: 3D plot of approximate solution with NIM to w for α = 1  

 

 
 

Fig 9: Proximity of series solution obtained by ADM and MADM toward the exact solution for v. 

 

 
 

Fig 10: Proximity of series solution obtained by ADM and MADM toward the exact solution for w. 
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Fig 11: Propagation of absolute error for w(x, t) in case of α=1 

 

 
 

                                                         Fig 12: Propagation of absolute error for v(x, t) in case of α=1. 

 

6. Results and Discussion 

We employ several advanced mathematical techniques to develop a series solution for the time fractional Drinfeld-Sokolov-

Wilson (DSW) equations. The Shehu Transform serves as a foundational tool, facilitating the application of the Adomian 

Decomposition Method (ADM), which is often referred to as the STADM (Singh A., et al., 2023) [18]. This approach allows us 

to break down complex nonlinear equations into simpler components for analysis and solution. In addition, we enhance our 

methodology by incorporating the Modified ADM, also known as the STMADM. This modification improves the convergence 

rate of the series solutions, enabling a quicker approach to the true solutions of the equations at hand. Furthermore, we utilize 

the New Iteration Method (NIM), or the STNIM, to introduce an iterative framework that refines our solutions. By integrating 

these methods, we aim to achieve a robust series solution capable of accurately capturing the intricate dynamics represented by 

the time fractional DSW equations.  

To validate the present results using three different methods (i.e., the Shehu Transform Adomian Decomposition Method 

(STADM), the Shehu Transform Modified Adomian Decomposition Method (STMADM), and the Shehu Transform New 

Iteration Method (STNIM)), the absolute errors are shown for V(x, t) and W(x, t) in Table 1. and Table 2, respectively. In these 

tables, the fractional order α is fixed at 1, and different values of x are considered specifically x = 2.5, 5, 7.5, 10. Additionally, 

various time values are examined, namely t = 0.025, 0.05, 0.075, 0.1 for both V(x, t) and W(x, t), when the solution is reduced 

to three terms. The examination of both tables clearly shows that the absolute error when comparing the exact solution to the 

approximation derived from the STMADM is notably smaller than the absolute error observed between the exact solution and 

the approximation obtained using the standard STADM for all specified values of t and x. Although there isn't an exact solution 

for fractional order α = 0.9, 0.7, 0.5, the solution using ADM and MADM has been found in Tables 3 and 4 for V(x, t) and W(x, 
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t). 

Figure 1 displays the 3D plot of the exact solution for v(x, t) in the situation of α=1, while Figures 2, 3, and 4 display the 

approximate solutions for the same for ADM, MADM, and NIM, respectively. Similarly, Figure 5 displays the 3D plot of the 

exact solution for w(x, t) in the case of α=1, while Figures 6, 7, and 8 display the approximate solutions for the same for ADM, 

MADM, and NIM, respectively. These figures show a comparison between the exact answer and the series solution obtained 

using various methods. The approximate answer we obtained using ADM, MADM, and NIM is quite similar to the actual 

solution, as can be inferred from both figures. The series solution obtained using STADM and STMADM is compared with the 

precise solution in Figures 9 and 10 for V and W, respectively. These figures show that in comparison to the solution produced 

by STADM, the solution obtained by STMADM is closer to the exact solution. 

Figures 11 and 12 illustrate the propagation of absolute error for w and v, respectively, when x = 2.5 and α = 1. It has been 

determined that when solutions are produced using STMADM rather than STADM, the absolute error falls more quickly. Thus, 

STMADM generally yields a smaller error in series solutions than the standard STADM due to its improved handling of 

nonlinear terms. STMADM employs a modified approach to decompose the nonlinear part of the differential equation, which 

allows for better convergence and accuracy in the series expansion. By systematically incorporating corrections and refining the 

approximation at each step, STMADM minimizes the error more effectively than STADM, resulting in a more precise solution 

to the original problem. This enhanced accuracy is particularly beneficial in cases where nonlinearities significantly influence 

the behavior of the solution.  

Iterative techniques like STADM and STMADM break down nonlinear terms into smaller, more manageable polynomial 

components, which makes it easier to converge to a solution. By comparing the series of solutions produced by these techniques, 

their efficacy is evaluated. Moreover, it has been observed that the solutions obtained through the Shehu Transform Modified 

Adomian Decomposition Method (STMADM) closely resemble those derived using the Homotopy Perturbation Method (HPM) 

as reported in the study (Baskonus, H. M. 2019), as well as those obtained through the New Iteration Method (NIM) as outlined 

in (Ali, N., et al., 2022). This similarity suggests that the STMADM and the Shehu Transform New Iteration Method (STNIM) 

yield comparable results in solving time-fractional differential equations. Therefore, it can be inferred that both STMADM and 

STNIM are consistent in their approach and effectiveness when applied to this class of equations, providing reliable solutions 

that align well with other established methods. The numerical values of and for various fractional orders α = 0.9, 0.7, 0.5 can be 

found in (Ali, N., et al., 2022) [3] since STADM and STNIM yield identical results. 
 

Table 1: Absolute error analysis for v(x, t) in case of α = 1 
 

x t V(exact) V(approx. STADM) V(approx. STMADM) Error (STADM) Error (STMADM) Error (Ali, N., et al., 2022)) 

2.5 0.025 0.088042878 0.088030534 0.088036744 1.23 × 10⁻⁵ 6.13 × 10⁻⁶ 6.13 × 10⁻⁶ 

 0.05 0.097151323 0.097050333 0.09710015 1.01 × 10⁻⁴ 5.13 × 10⁻⁵ 5.12 × 10⁻⁵ 

 0.075 0.10718471 0.10683608 0.10700375 3.49 × 10⁻⁴ 1.81 × 10⁻⁴ 1.81 × 10⁻⁴ 

 0.1 0.11823316 0.11738777 0.11778522 8.45 × 10⁻⁴ 4.48 × 10⁻⁴ 4.48 × 10⁻⁴ 

5 0.025 0.00060203577 0.00060194272 0.0006019881 9.31 × 10⁻⁸ 4.77 × 10⁻⁸ 4.77 × 10⁻⁸ 

 0.05 0.0006653454 0.00066458177 0.00066494477 7.64 × 10⁻⁷ 4.01 × 10⁻⁷ 4.01 × 10⁻⁷ 

 0.075 0.00073531181 0.00073266682 0.00073389195 2.64 × 10⁻⁶ 1.42 × 10⁻⁶ 1.42 × 10⁻⁶ 

 0.1 0.00081263476 0.00080619789 0.0008091019 6.44 × 10⁻⁶ 3.53 × 10⁻⁶ 3.53 × 10⁻⁶ 

7.5 0.025 4.05688944 × 10⁻⁶ 4.056262 × 10⁻⁶ 4.0565679 × 10⁻⁶ 6.27 × 10⁻¹⁰ 3.21 × 10⁻¹⁰ 3.21 × 10⁻¹⁰ 

 0.05 4.48355591 × 10⁻⁶ 4.4784066 × 10⁻⁶ 4.4808539 × 10⁻⁶ 5.15 × 10⁻⁹ 2.70 × 10⁻⁹ 2.70 × 10⁻⁹ 

 0.075 4.95509521 × 10⁻⁶ 4.9372595 × 10⁻⁶ 4.9455188 × 10⁻⁶ 1.78 × 10⁻⁸ 9.58 × 10⁻⁹ 9.58 × 10⁻⁹ 

 0.1 5.47622664 × 10⁻⁶ 5.4328205 × 10⁻⁶ 5.4523981 × 10⁻⁶ 4.34 × 10⁻⁸ 2.38 × 10⁻⁸ 2.38 × 10⁻⁸ 

10 0.025 2.73351244 × 10⁻⁸ 2.7330897 × 10⁻⁸ 2.7332958 × 10⁻⁸ 4.23 × 10⁻¹² 2.17 × 10⁻¹² 2.17 × 10⁻¹² 

 0.05 3.02099845 × 10⁻⁸ 3.0175289 × 10⁻⁸ 3.0191778 × 10⁻⁸ 3.47 × 10⁻¹⁰ 1.82 × 10⁻¹⁰ 1.82 × 10⁻¹⁰ 

 0.075 3.33891963 × 10⁻⁸ 3.3267019 × 10⁻⁸ 3.332267 × 10⁻⁸ 1.22 × 10⁻⁹ 6.65 × 10⁻¹⁰ 6.65 × 10⁻¹⁰ 

 0.1 3.68983383 × 10⁻⁸ 3.6606088 × 10⁻⁸ 3.6738002 × 10⁻⁸ 2.92 × 10⁻⁹ 1.60 × 10⁻⁹ 1.60 × 10⁻⁹ 

 

Table 2: Absolute error analysis for w(x, t) in case of α=1 
 

x t w(exact) W(approx. STADM) W(approx. STMADM) Error (STADM) 
Error 

(STMADM) 
Error (Ali, N., et al., 2022) [3] 

2.5 0.025 0.34262298 0.3426173 0.34262138 5.68 × 10⁻⁶ 1.60 × 10⁻⁶ 1.60 × 10⁻⁶ 

 0.05 0.35990985 0.35986413 0.35989677 4.57 × 10⁻⁵ 1.31 × 10⁻⁵ 1.31 × 10⁻⁵ 

 0.075 0.37803829 0.37788295 0.37799312 1.55 × 10⁻⁴ 4.52 × 10⁻⁵ 4.52 × 10⁻⁵ 

 0.1 0.39704435 0.39667376 0.39693491 3.71 × 10⁻⁴ 1.09 × 10⁻⁴ 1.09 × 10⁻⁴ 

5 0.025 0.028332214 0.028331646 0.028331649 5.68 × 10⁻⁷ 5.65 × 10⁻⁷ 5.65 × 10⁻⁷ 

 0.05 0.029784681 0.0298008 0.0297801 1.61 × 10⁻⁵ 4.58 × 10⁻⁶ 4.58 × 10⁻⁶ 

 0.075 0.031311591 0.031295866 0.031295932 1.57 × 10⁻⁵ 1.57 × 10⁻⁵ 1.57 × 10⁻⁵ 

 0.1 0.032916759 0.032879003 0.03287916 3.78 × 10⁻⁵ 3.76 × 10⁻⁵ 3.76 × 10⁻⁵ 

7.5 0.025 0.002325765662 0.002325718991 0.002325718992 4.6671 × 10⁻⁸ 4.6670 × 10⁻⁸ 4.6670 × 10⁻⁸ 

 0.05 0.002445010131 0.0024446320058 0.002444632017 3.7813 × 10⁻⁷ 3.7811 × 10⁻⁷ 3.7811 × 10⁻⁷ 

 0.075 0.00257036838 0.00256907585 0.002569075886 1.29253 × 10⁻⁶ 1.29249 × 10⁻⁶ 1.29249 × 10⁻⁶ 

 0.1 0.002702153868 0.002699050522 0.002699050608 3.10335 × 10⁻⁶ 3.10326 × 10⁻⁶ 3.10326 × 10⁻⁶ 

10 0.025 0.0001909105353 0.0001909067042 0.0001909067042 3.8311 × 10⁻⁹ 3.8311 × 10⁻⁹ 3.8311 × 10⁻⁹ 

 0.05 0.0002006987277 0.000200667689 0.0002006676891 3.10387 × 10⁻⁸ 3.10387 × 10⁻⁸ 3.10387 × 10⁻⁸ 
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 0.075 0.0002109887715 0.0002108826732 0.0002108826732 1.06098 × 10⁻⁷ 1.06098 × 10⁻⁷ 1.06098 × 10⁻⁷ 

 0.1 0.000221806397 0.00022155165657 0.00022155165662 2.54740 × 10⁻⁷ 2.54740 × 10⁻⁷ 2.54740 × 10⁻⁷ 

 

Table 3: Comparison of approximate values of v(x, t) at different fractional order 
 

x t ADM α=0.9 MADM α=0.9 ADM α=0.7 MADM α=0.7 ADM α=0.5 MADM α=0.5 

2.5 0.025 0.092566907 0.092591392 0.11161325 0.11196605 0.16658501 0.17109933 

2.5 0.05 0.10518823 0.10534733 0.13721684 0.13872933 0.2204894 0.23325784 

2.5 0.075 0.11848991 0.11896539 0.1625566 0.16610051 0.26898029 0.29243741 

2.5 0.1 0.13257331 0.13360718 0.18818762 0.19467179 0.31466895 0.35078353 

5 0.025 0.00063344507 0.00063362398 0.00076614309 0.00076872083 0.0011513153 0.0011842994 

5 0.05 0.00072124025 0.00072240276 0.00094508524 0.00095613626 0.0015301711 0.001623464 

5 0.075 0.00081397228 0.00081744639 0.0011226055 0.0011484992 0.0018715629 0.002042953 

5 0.1 0.00091232422 0.00091987825 0.0013024543 0.001349831 0.0021935621 0.0024574343 

7.5 0.025 4.2685664× 10⁻⁶ 4.2697725× 10⁻⁶ 5.1628804× 10⁻⁶ 5.1802585× 10⁻⁶ 7.7588349× 10⁻⁶ 7.9811999× 10⁻⁶ 

7.5 0.05 4.8602529× 10⁻⁶ 4.8680901× 10⁻⁶ 6.3688805× 10⁻⁶ 6.443382× 10⁻⁶ 1.031227× 10⁻⁵ 1.0941213× 10⁻⁵ 

7.5 0.075 5.48522× 10⁻⁶ 5.5086411× 10⁻⁶ 7.5653167× 10⁻⁶ 7.7398815× 10⁻⁶ 1.261323× 10⁻⁵ 1.3768672× 10⁻⁵ 

7.5 0.1 6.1480702× 10⁻⁶ 6.1989964× 10⁻⁶ 8.7774594× 10⁻⁶ 9.0968543×10⁻⁶ 1.4783499× 10⁻⁵ 1.6562419× 10⁻⁵ 

10 0.025 2.8761395× 10⁻⁸ 2.8769521× 10⁻⁸ 3.4787244× 10⁻⁸ 3.4904337× 10⁻⁸ 5.2278679× 10⁻⁸ 5.3776968× 10⁻⁸ 

10 0.05 3.2748152× 10⁻⁸ 3.2800959× 10⁻⁸ 4.2913222× 10⁻⁸ 4.3415212× 10⁻⁸ 6.9483624× 10⁻⁸ 7.3721424× 10⁻⁸ 

10 0.075 3.6959154× 10⁻⁸ 3.711696× 10⁻⁸ 5.097476× 10⁻⁸ 5.2150973× 10⁻⁸ 8.4987401× 10⁻⁸ 9.2772737× 10⁻⁸ 

10 0.1 4.1425411× 10⁻⁸ 4.176855× 10⁻⁸ 5.9142128× 10⁻⁸ 6.1294202× 10⁻⁸ 9.9610589× 10⁻⁸ 1.115969× 10⁻⁷ 

 

Table 4: Comparison of approximate values of w(x, t) at different fractional order 
 

x t ADM α=0.9 MADM α=0.9 ADM α=0.7 MADM α=0.7 ADM α=0.5 MADM α=0.5 

2.5 0.025 0.351296880640 0.351312964200 0.385375662930 0.385607404800 0.471840095610 0.474805396300 

2.5 0.05 0.374638594810 0.374743105900 0.428133744300 0.429127243400 0.550278925810 0.558666062800 

2.5 0.075 0.398123311140 0.398435637600 0.468146449360 0.470474321500 0.617652024230 0.633060178700 

2.5 0.10 0.422058898120 0.422738013200 0.507046107030 0.511305330900 0.679297078400 0.703019484100 

5 0.025 0.029060559950 0.029060569590 0.031931092470 0.031931231420 0.039260399380 0.039262177330 

5 0.05 0.031023736250 0.031023798920 0.035544565080 0.035545160770 0.045937454130 0.045942482950 

5 0.075 0.033003132160 0.033003319430 0.038935621180 0.038937016940 0.051687777610 0.051697016150 

5 0.1 0.035024188620 0.035024595810 0.042239272280 0.042241826060 0.056958389690 0.056972613350 

7.5 0.025 0.002385561080 0.002385561090 0.002621229770 0.002621229850 0.003222986150 0.003222987130 

7.5 0.05 0.002546734840 0.002546734880 0.002917899850 0.002917900180 0.003771206190 0.003771208970 

7.5 0.075 0.002709242520 0.002709242620 0.003196314560 0.003196315340 0.004243345200 0.004243350310 

7.5 0.1 0.002875172530 0.002875172750 0.003467556890 0.003467558300 0.004676101770 0.004676109640 

10 0.025 0.000195818850 0.000195818850 0.000215163730 0.000215163730 0.000264558980 0.000264558980 

10 0.05 0.000209048810 0.000209048810 0.000239515930 0.000239515930 0.000309559690 0.000309559690 

10 0.075 0.000222388270 0.000222388270 0.000262369630 0.000262369630 0.000348315290 0.000348315290 

10 0.10 0.000236008650 0.000236008650 0.000284634590 0.000284634590 0.000383838180 0.000383838180 

 

7. Conclusion  

In this study, we extended the STADM to the STMADM along with the NIM to develop a series solution for the time fractional 

Drinfeld-Sokolov-Wilson (DSW) equations. To validate our results, the absolute error is calculated for the series solutions when 

α = 1, where α represents the fractional time derivative and falls within the range 0 < α < 1, which were obtained with the aid of 

the STADM and the STMADM. In comparison to the standard STADM, the STMADM typically yields a better approximation 

with a smaller inaccuracy, this may be because STMADM enhances the convergence rate of the series solution by modifying 

the decomposition process, allowing the approximate solution to reach the true solution more quickly. This improved 

convergence requires fewer terms for accuracy, reducing the overall error. Also, present versions of STMADM include higher-

order approximations for nonlinear terms, allowing it to represent complex nonlinear behaviors more accurately. Lastly, it has 

been observed that the solutions produced by the New Iteration Method (NIM) are fairly close to those found by the Shehu 

Transform Modified Adomian Decomposition Method (STMADM). As a result, the results generated by the Shehu Transform 

New Iteration Method (STNIM) and STMADM are highly similar. Thus, when applied to time-fractional differential equations, 

STMADM and STNIM both yield comparable and reliable results. 
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